Interactions of nanomaterials and plants at the cellular level: current knowledge and relevant gaps View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-01-20

AUTHORS

Guadalupe de la Rosa, Edgar Vázquez-Núñez, Carlos Molina-Guerrero, Alma H. Serafín-Muñoz, Ileana Vera-Reyes

ABSTRACT

Nanoparticles (NPs) interact with living organisms through different pathways. These interactions depend on chemical nature of NPs, capping, and size, among others. In the last years, the use of different NPs for agricultural purposes has increased. Their applications mainly involve dosing though soil or foliar spraying. Different studies have indicated that NPs can be absorbed by plant roots or through foliar exposure, and may reach all plant organs including fruits, affecting their quality. In addition, they provide a route of exposure for humans and animals. Due to their physicochemical properties and high reactivity, NPs may influence basic cellular processes such as proliferation, metabolism, and death. In recent years, several studies have evaluated the effects of NPs applications, highlighting their capability to induce oxidative stress, interrupt the transport activity of the cell membrane of electrons/ions, cause oxidative damage, or modulating gene regulation. Given that risk assessment for conventional materials may not be applicable to nanomaterials (NMs), it is of great practical and scientific importance to study the safety of NMs for sustainable food production and consumer health protection. The present review intends to consolidate current knowledge on cellular and related interactions of NPs with plants. With this information we propose what we consider are relevant gaps to be filled in order to provide a more systemic picture of the above-mentioned interactions. More... »

PAGES

7

References to SciGraph publications

  • 2019-07-18. A new glance on root-to-shoot in vivo zinc transport and time-dependent physiological effects of ZnSO4 and ZnO nanoparticles on plants in SCIENTIFIC REPORTS
  • 2019-05-30. Different Uptake of Metal Dioxide Nanoparticles (Ceria Nanoparticles, Zirconia Nanoparticles and Silica Nanoparticles) by Wheat in BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY
  • 2020-03-20. Influence of α- and γ-Fe2O3 Nanoparticles on Watermelon (Citrullus lanatus) Physiology and Fruit Quality in WATER, AIR, & SOIL POLLUTION
  • 2017-09-07. Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants in JOURNAL OF MATERIALS SCIENCE
  • 2017-02-06. Plant Response to Engineered Metal Oxide Nanoparticles in NANOSCALE RESEARCH LETTERS
  • 2016-08-19. Nanofertilisers, Nanopesticides and Nanosensors in Agriculture in NANOSCIENCE IN FOOD AND AGRICULTURE 1
  • 2015-04-24. Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling in BMC GENOMICS
  • 2019-08-11. Environmental pollution effects on plant microbiota: the case study of poplar bacterial-fungal response to silver nanoparticles in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2016-10-14. Uptake, Translocation, Accumulation, Transformation, and Generational Transmission of Nanoparticles in Plants in PLANT NANOTECHNOLOGY
  • 2013-01-10. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake in JOURNAL OF NANOPARTICLE RESEARCH
  • 2018-06-07. Ratio of sugar concentrations in the phloem sap and the cytosol of mesophyll cells in different tree species as an indicator of the phloem loading mechanism in PLANTA
  • 2015-09-23. Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • 2018-02-19. New insights into the cellular responses to iron nanoparticles in Capsicum annuum in SCIENTIFIC REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s41204-020-00100-1

    DOI

    http://dx.doi.org/10.1007/s41204-020-00100-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1134734325


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Divisi\u00f3n de Ciencias e Ingenier\u00eda, Universidad de Guanajuato, Loma del Bosque 103, C.P. 37150, Le\u00f3n, Gto, Mexico", 
              "id": "http://www.grid.ac/institutes/grid.412891.7", 
              "name": [
                "Divisi\u00f3n de Ciencias e Ingenier\u00eda, Universidad de Guanajuato, Loma del Bosque 103, C.P. 37150, Le\u00f3n, Gto, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de la Rosa", 
            "givenName": "Guadalupe", 
            "id": "sg:person.01044525076.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044525076.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Divisi\u00f3n de Ciencias e Ingenier\u00eda, Universidad de Guanajuato, Loma del Bosque 103, C.P. 37150, Le\u00f3n, Gto, Mexico", 
              "id": "http://www.grid.ac/institutes/grid.412891.7", 
              "name": [
                "Divisi\u00f3n de Ciencias e Ingenier\u00eda, Universidad de Guanajuato, Loma del Bosque 103, C.P. 37150, Le\u00f3n, Gto, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "V\u00e1zquez-N\u00fa\u00f1ez", 
            "givenName": "Edgar", 
            "id": "sg:person.01313306724.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313306724.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Divisi\u00f3n de Ciencias e Ingenier\u00eda, Universidad de Guanajuato, Loma del Bosque 103, C.P. 37150, Le\u00f3n, Gto, Mexico", 
              "id": "http://www.grid.ac/institutes/grid.412891.7", 
              "name": [
                "Divisi\u00f3n de Ciencias e Ingenier\u00eda, Universidad de Guanajuato, Loma del Bosque 103, C.P. 37150, Le\u00f3n, Gto, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Molina-Guerrero", 
            "givenName": "Carlos", 
            "id": "sg:person.016353672354.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016353672354.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Divisi\u00f3n de Ingenier\u00edas, Universidad de Guanajuato, Av. Ju\u00e1rez 77, C.P. 36000, Guanajuato, Gto, Mexico", 
              "id": "http://www.grid.ac/institutes/grid.412891.7", 
              "name": [
                "Divisi\u00f3n de Ingenier\u00edas, Universidad de Guanajuato, Av. Ju\u00e1rez 77, C.P. 36000, Guanajuato, Gto, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Seraf\u00edn-Mu\u00f1oz", 
            "givenName": "Alma H.", 
            "id": "sg:person.011444040367.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011444040367.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departamento de Biociencias y Agrotecnolog\u00eda, CONACYT-Centro de Investigaci\u00f3n en Qu\u00edmica Aplicada, Blvd. Enrique Reyna Hermosillo 140, C.P. 25294, Saltillo, Coah, Mexico", 
              "id": "http://www.grid.ac/institutes/grid.418270.8", 
              "name": [
                "Departamento de Biociencias y Agrotecnolog\u00eda, CONACYT-Centro de Investigaci\u00f3n en Qu\u00edmica Aplicada, Blvd. Enrique Reyna Hermosillo 140, C.P. 25294, Saltillo, Coah, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vera-Reyes", 
            "givenName": "Ileana", 
            "id": "sg:person.01323217403.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323217403.71"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s11671-017-1861-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083688176", 
              "https://doi.org/10.1186/s11671-017-1861-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-1530-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039986581", 
              "https://doi.org/10.1186/s12864-015-1530-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-18055-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101019979", 
              "https://doi.org/10.1038/s41598-017-18055-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10853-017-1544-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091531152", 
              "https://doi.org/10.1007/s10853-017-1544-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11051-013-1417-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020351104", 
              "https://doi.org/10.1007/s11051-013-1417-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-39303-2_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031211222", 
              "https://doi.org/10.1007/978-3-319-39303-2_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-018-2933-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104457377", 
              "https://doi.org/10.1007/s00425-018-2933-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-019-10071-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120275272", 
              "https://doi.org/10.1007/s00253-019-10071-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11270-020-04511-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125790889", 
              "https://doi.org/10.1007/s11270-020-04511-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-46796-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1118092962", 
              "https://doi.org/10.1038/s41598-019-46796-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00128-019-02638-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1116059871", 
              "https://doi.org/10.1007/s00128-019-02638-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-015-5423-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034534420", 
              "https://doi.org/10.1007/s11356-015-5423-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-42154-4_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029410458", 
              "https://doi.org/10.1007/978-3-319-42154-4_8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-01-20", 
        "datePublishedReg": "2021-01-20", 
        "description": "Nanoparticles (NPs) interact with living organisms through different pathways. These interactions depend on chemical nature of NPs, capping, and size, among others. In the last years, the use of different NPs for agricultural purposes has increased. Their applications mainly involve dosing though soil or foliar spraying. Different studies have indicated that NPs can be absorbed by plant roots or through foliar exposure, and may reach all plant organs including fruits, affecting their quality. In addition, they provide a route of exposure for humans and animals. Due to their physicochemical properties and high reactivity, NPs may influence basic cellular processes such as proliferation, metabolism, and death. In recent years, several studies have evaluated the effects of NPs applications, highlighting their capability to induce oxidative stress, interrupt the transport activity of the cell membrane of electrons/ions, cause oxidative damage, or modulating gene regulation. Given that risk assessment for conventional materials may not be applicable to nanomaterials (NMs), it is of great practical and scientific importance to study the safety of NMs for sustainable food production and consumer health protection. The present review intends to consolidate current knowledge on cellular and related interactions of NPs with plants. With this information we propose what we consider are relevant gaps to be filled in order to provide a more systemic picture of the above-mentioned interactions.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s41204-020-00100-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1159324", 
            "issn": [
              "2365-6379", 
              "2365-6387"
            ], 
            "name": "Nanotechnology for Environmental Engineering", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "basic cellular processes", 
          "current knowledge", 
          "gene regulation", 
          "plant organs", 
          "cellular processes", 
          "plant roots", 
          "foliar exposure", 
          "sustainable food production", 
          "transport activity", 
          "foliar spraying", 
          "cellular level", 
          "cell membrane", 
          "oxidative damage", 
          "different pathways", 
          "oxidative stress", 
          "plants", 
          "NPs application", 
          "food production", 
          "present review", 
          "organisms", 
          "interaction", 
          "interaction of nanomaterials", 
          "agricultural purposes", 
          "pathway", 
          "regulation", 
          "metabolism", 
          "membrane", 
          "proliferation", 
          "scientific importance", 
          "roots", 
          "systemic picture", 
          "fruit", 
          "chemical nature", 
          "soil", 
          "related interactions", 
          "organs", 
          "animals", 
          "humans", 
          "stress", 
          "production", 
          "route of exposure", 
          "activity", 
          "capping", 
          "exposure", 
          "different studies", 
          "damage", 
          "death", 
          "safety of nanomaterials", 
          "knowledge", 
          "recent years", 
          "importance", 
          "levels", 
          "study", 
          "risk assessment", 
          "addition", 
          "consumer health protection", 
          "protection", 
          "physicochemical properties", 
          "size", 
          "review", 
          "process", 
          "relevant gaps", 
          "last years", 
          "spraying", 
          "effect", 
          "nature", 
          "information", 
          "years", 
          "route", 
          "gap", 
          "applications", 
          "use", 
          "picture", 
          "ions", 
          "order", 
          "properties", 
          "different nanoparticles", 
          "high reactivity", 
          "capability", 
          "reactivity", 
          "nanomaterials", 
          "quality", 
          "health protection", 
          "assessment", 
          "electrons/ions", 
          "purpose", 
          "nanoparticles", 
          "materials", 
          "conventional materials", 
          "safety"
        ], 
        "name": "Interactions of nanomaterials and plants at the cellular level: current knowledge and relevant gaps", 
        "pagination": "7", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1134734325"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s41204-020-00100-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s41204-020-00100-1", 
          "https://app.dimensions.ai/details/publication/pub.1134734325"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_909.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s41204-020-00100-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41204-020-00100-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41204-020-00100-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41204-020-00100-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41204-020-00100-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    233 TRIPLES      22 PREDICATES      128 URIs      107 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s41204-020-00100-1 schema:about anzsrc-for:06
    2 anzsrc-for:0607
    3 schema:author Nf58f7563807a411aaa601cf3f2d4c277
    4 schema:citation sg:pub.10.1007/978-3-319-39303-2_9
    5 sg:pub.10.1007/978-3-319-42154-4_8
    6 sg:pub.10.1007/s00128-019-02638-6
    7 sg:pub.10.1007/s00253-019-10071-2
    8 sg:pub.10.1007/s00425-018-2933-7
    9 sg:pub.10.1007/s10853-017-1544-1
    10 sg:pub.10.1007/s11051-013-1417-8
    11 sg:pub.10.1007/s11270-020-04511-3
    12 sg:pub.10.1007/s11356-015-5423-5
    13 sg:pub.10.1038/s41598-017-18055-w
    14 sg:pub.10.1038/s41598-019-46796-3
    15 sg:pub.10.1186/s11671-017-1861-y
    16 sg:pub.10.1186/s12864-015-1530-4
    17 schema:datePublished 2021-01-20
    18 schema:datePublishedReg 2021-01-20
    19 schema:description Nanoparticles (NPs) interact with living organisms through different pathways. These interactions depend on chemical nature of NPs, capping, and size, among others. In the last years, the use of different NPs for agricultural purposes has increased. Their applications mainly involve dosing though soil or foliar spraying. Different studies have indicated that NPs can be absorbed by plant roots or through foliar exposure, and may reach all plant organs including fruits, affecting their quality. In addition, they provide a route of exposure for humans and animals. Due to their physicochemical properties and high reactivity, NPs may influence basic cellular processes such as proliferation, metabolism, and death. In recent years, several studies have evaluated the effects of NPs applications, highlighting their capability to induce oxidative stress, interrupt the transport activity of the cell membrane of electrons/ions, cause oxidative damage, or modulating gene regulation. Given that risk assessment for conventional materials may not be applicable to nanomaterials (NMs), it is of great practical and scientific importance to study the safety of NMs for sustainable food production and consumer health protection. The present review intends to consolidate current knowledge on cellular and related interactions of NPs with plants. With this information we propose what we consider are relevant gaps to be filled in order to provide a more systemic picture of the above-mentioned interactions.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N00f2a8b7db954ece9715bd50a8b7c7ca
    24 N6ed94459b1474e5f96fb7a8ce4aa5df9
    25 sg:journal.1159324
    26 schema:keywords NPs application
    27 activity
    28 addition
    29 agricultural purposes
    30 animals
    31 applications
    32 assessment
    33 basic cellular processes
    34 capability
    35 capping
    36 cell membrane
    37 cellular level
    38 cellular processes
    39 chemical nature
    40 consumer health protection
    41 conventional materials
    42 current knowledge
    43 damage
    44 death
    45 different nanoparticles
    46 different pathways
    47 different studies
    48 effect
    49 electrons/ions
    50 exposure
    51 foliar exposure
    52 foliar spraying
    53 food production
    54 fruit
    55 gap
    56 gene regulation
    57 health protection
    58 high reactivity
    59 humans
    60 importance
    61 information
    62 interaction
    63 interaction of nanomaterials
    64 ions
    65 knowledge
    66 last years
    67 levels
    68 materials
    69 membrane
    70 metabolism
    71 nanomaterials
    72 nanoparticles
    73 nature
    74 order
    75 organisms
    76 organs
    77 oxidative damage
    78 oxidative stress
    79 pathway
    80 physicochemical properties
    81 picture
    82 plant organs
    83 plant roots
    84 plants
    85 present review
    86 process
    87 production
    88 proliferation
    89 properties
    90 protection
    91 purpose
    92 quality
    93 reactivity
    94 recent years
    95 regulation
    96 related interactions
    97 relevant gaps
    98 review
    99 risk assessment
    100 roots
    101 route
    102 route of exposure
    103 safety
    104 safety of nanomaterials
    105 scientific importance
    106 size
    107 soil
    108 spraying
    109 stress
    110 study
    111 sustainable food production
    112 systemic picture
    113 transport activity
    114 use
    115 years
    116 schema:name Interactions of nanomaterials and plants at the cellular level: current knowledge and relevant gaps
    117 schema:pagination 7
    118 schema:productId Na60d9b1c9ab245b9a6123b283b4304cd
    119 Naeeffe9c64c04928a8869c012c43b6fc
    120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134734325
    121 https://doi.org/10.1007/s41204-020-00100-1
    122 schema:sdDatePublished 2022-01-01T19:02
    123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    124 schema:sdPublisher Ne002748c0a7d4b0fbdea2c8f84dff570
    125 schema:url https://doi.org/10.1007/s41204-020-00100-1
    126 sgo:license sg:explorer/license/
    127 sgo:sdDataset articles
    128 rdf:type schema:ScholarlyArticle
    129 N00f2a8b7db954ece9715bd50a8b7c7ca schema:issueNumber 1
    130 rdf:type schema:PublicationIssue
    131 N01c8ef7729184e62ba71f55ab382d8fd rdf:first sg:person.01313306724.44
    132 rdf:rest Nc8a093ad43e540bda2dfdb02a325e802
    133 N1cab2e37b77c40d4917613ecdcf4b491 rdf:first sg:person.011444040367.50
    134 rdf:rest N3128897bf28b4355a17c8ec97b56cb31
    135 N3128897bf28b4355a17c8ec97b56cb31 rdf:first sg:person.01323217403.71
    136 rdf:rest rdf:nil
    137 N6ed94459b1474e5f96fb7a8ce4aa5df9 schema:volumeNumber 6
    138 rdf:type schema:PublicationVolume
    139 Na60d9b1c9ab245b9a6123b283b4304cd schema:name doi
    140 schema:value 10.1007/s41204-020-00100-1
    141 rdf:type schema:PropertyValue
    142 Naeeffe9c64c04928a8869c012c43b6fc schema:name dimensions_id
    143 schema:value pub.1134734325
    144 rdf:type schema:PropertyValue
    145 Nc8a093ad43e540bda2dfdb02a325e802 rdf:first sg:person.016353672354.16
    146 rdf:rest N1cab2e37b77c40d4917613ecdcf4b491
    147 Ne002748c0a7d4b0fbdea2c8f84dff570 schema:name Springer Nature - SN SciGraph project
    148 rdf:type schema:Organization
    149 Nf58f7563807a411aaa601cf3f2d4c277 rdf:first sg:person.01044525076.18
    150 rdf:rest N01c8ef7729184e62ba71f55ab382d8fd
    151 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Biological Sciences
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Plant Biology
    156 rdf:type schema:DefinedTerm
    157 sg:journal.1159324 schema:issn 2365-6379
    158 2365-6387
    159 schema:name Nanotechnology for Environmental Engineering
    160 schema:publisher Springer Nature
    161 rdf:type schema:Periodical
    162 sg:person.01044525076.18 schema:affiliation grid-institutes:grid.412891.7
    163 schema:familyName de la Rosa
    164 schema:givenName Guadalupe
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044525076.18
    166 rdf:type schema:Person
    167 sg:person.011444040367.50 schema:affiliation grid-institutes:grid.412891.7
    168 schema:familyName Serafín-Muñoz
    169 schema:givenName Alma H.
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011444040367.50
    171 rdf:type schema:Person
    172 sg:person.01313306724.44 schema:affiliation grid-institutes:grid.412891.7
    173 schema:familyName Vázquez-Núñez
    174 schema:givenName Edgar
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313306724.44
    176 rdf:type schema:Person
    177 sg:person.01323217403.71 schema:affiliation grid-institutes:grid.418270.8
    178 schema:familyName Vera-Reyes
    179 schema:givenName Ileana
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323217403.71
    181 rdf:type schema:Person
    182 sg:person.016353672354.16 schema:affiliation grid-institutes:grid.412891.7
    183 schema:familyName Molina-Guerrero
    184 schema:givenName Carlos
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016353672354.16
    186 rdf:type schema:Person
    187 sg:pub.10.1007/978-3-319-39303-2_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031211222
    188 https://doi.org/10.1007/978-3-319-39303-2_9
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/978-3-319-42154-4_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029410458
    191 https://doi.org/10.1007/978-3-319-42154-4_8
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s00128-019-02638-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116059871
    194 https://doi.org/10.1007/s00128-019-02638-6
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s00253-019-10071-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120275272
    197 https://doi.org/10.1007/s00253-019-10071-2
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s00425-018-2933-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104457377
    200 https://doi.org/10.1007/s00425-018-2933-7
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s10853-017-1544-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091531152
    203 https://doi.org/10.1007/s10853-017-1544-1
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s11051-013-1417-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020351104
    206 https://doi.org/10.1007/s11051-013-1417-8
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s11270-020-04511-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125790889
    209 https://doi.org/10.1007/s11270-020-04511-3
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s11356-015-5423-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034534420
    212 https://doi.org/10.1007/s11356-015-5423-5
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/s41598-017-18055-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1101019979
    215 https://doi.org/10.1038/s41598-017-18055-w
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/s41598-019-46796-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1118092962
    218 https://doi.org/10.1038/s41598-019-46796-3
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1186/s11671-017-1861-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1083688176
    221 https://doi.org/10.1186/s11671-017-1861-y
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1186/s12864-015-1530-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039986581
    224 https://doi.org/10.1186/s12864-015-1530-4
    225 rdf:type schema:CreativeWork
    226 grid-institutes:grid.412891.7 schema:alternateName División de Ciencias e Ingeniería, Universidad de Guanajuato, Loma del Bosque 103, C.P. 37150, León, Gto, Mexico
    227 División de Ingenierías, Universidad de Guanajuato, Av. Juárez 77, C.P. 36000, Guanajuato, Gto, Mexico
    228 schema:name División de Ciencias e Ingeniería, Universidad de Guanajuato, Loma del Bosque 103, C.P. 37150, León, Gto, Mexico
    229 División de Ingenierías, Universidad de Guanajuato, Av. Juárez 77, C.P. 36000, Guanajuato, Gto, Mexico
    230 rdf:type schema:Organization
    231 grid-institutes:grid.418270.8 schema:alternateName Departamento de Biociencias y Agrotecnología, CONACYT-Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, C.P. 25294, Saltillo, Coah, Mexico
    232 schema:name Departamento de Biociencias y Agrotecnología, CONACYT-Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, C.P. 25294, Saltillo, Coah, Mexico
    233 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...