Optical properties of nanoparticles and nanofluids for direct absorption of solar radiation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

V. K. Pustovalov, L. G. Astafyeva

ABSTRACT

Theoretical investigation and selection of the optical properties of homogeneous metallic (titanium Ti, gold Au) and metal core–oxide shell (Ti–TiO2) nanoparticles with the radii 50, 75, 100 and 125 nm and their nanofluids have been carried out in the spectral interval 200–2500 nm for the purpose of effective absorption of solar radiation. Selected Ti and Ti–TiO2 nanoparticles with the radii 75–100 nm, in some cases up to 125 nm, are good absorbers in the visible and infrared spectral intervals and can be proposed for their use in solar thermal systems. Extinction and absorption of solar radiation by nanofluids (nanoparticles and water) are determined by the dominant influence of the system of Ti and Ti + TiO2 nanoparticles with concentration 109 cm−3 in the spectral interval 200–800 nm for the radii 50–75 nm and in interval 200–1100 nm for the radii 100–125 nm, and water dominantly influences the radiation extinction by nanofluid in the spectral range 1200–2500 nm. More... »

PAGES

15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41204-018-0044-0

DOI

http://dx.doi.org/10.1007/s41204-018-0044-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107186298


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Belarusian National Technical University", 
          "id": "https://www.grid.ac/institutes/grid.9427.8", 
          "name": [
            "Belarusian National Technical University, Pr. Independency, 65, 220013, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pustovalov", 
        "givenName": "V. K.", 
        "id": "sg:person.012416131515.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012416131515.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "BI Stepanov Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.426545.4", 
          "name": [
            "B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Pr. Independence, 68, 220072, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Astafyeva", 
        "givenName": "L. G.", 
        "id": "sg:person.0651536303.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651536303.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/la102912u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003881420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la102912u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003881420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2015.09.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007322029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ra00630e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011290464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2016.04.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012795142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2015.04.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013102079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2016.12.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014063238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.12.000555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015209772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ome.6.000640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015278335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solener.2015.01.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017192102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep29836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017774372", 
          "https://doi.org/10.1038/srep29836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solener.2015.09.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029682641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2016.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029773338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solener.2013.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030195742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solener.2016.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031714530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0030400x16070043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033765269", 
          "https://doi.org/10.1134/s0030400x16070043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0030400x16070043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033765269", 
          "https://doi.org/10.1134/s0030400x16070043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ra11130k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038503934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10812-016-0272-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039716136", 
          "https://doi.org/10.1007/s10812-016-0272-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11671-007-9060-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041218072", 
          "https://doi.org/10.1007/s11671-007-9060-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/s1110662x03000278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044880715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ijlct/ctw007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046132121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2017.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047180123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ra26979f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049595201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41204-017-0019-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085886939", 
          "https://doi.org/10.1007/s41204-017-0019-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41204-017-0019-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085886939", 
          "https://doi.org/10.1007/s41204-017-0019-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0030400x17070189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090852158", 
          "https://doi.org/10.1134/s0030400x17070189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2017.08.144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091430409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091911929"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Theoretical investigation and selection of the optical properties of homogeneous metallic (titanium Ti, gold Au) and metal core\u2013oxide shell (Ti\u2013TiO2) nanoparticles with the radii 50, 75, 100 and 125 nm and their nanofluids have been carried out in the spectral interval 200\u20132500 nm for the purpose of effective absorption of solar radiation. Selected Ti and Ti\u2013TiO2 nanoparticles with the radii 75\u2013100 nm, in some cases up to 125 nm, are good absorbers in the visible and infrared spectral intervals and can be proposed for their use in solar thermal systems. Extinction and absorption of solar radiation by nanofluids (nanoparticles and water) are determined by the dominant influence of the system of Ti and Ti + TiO2 nanoparticles with concentration 109 cm\u22123 in the spectral interval 200\u2013800 nm for the radii 50\u201375 nm and in interval 200\u20131100 nm for the radii 100\u2013125 nm, and water dominantly influences the radiation extinction by nanofluid in the spectral range 1200\u20132500 nm.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s41204-018-0044-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1159324", 
        "issn": [
          "2365-6379", 
          "2365-6387"
        ], 
        "name": "Nanotechnology for Environmental Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Optical properties of nanoparticles and nanofluids for direct absorption of solar radiation", 
    "pagination": "15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a5af04fd73f0eeaa53a60121b169fbcb71055f89475a56740f9427fbb10e73a6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41204-018-0044-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107186298"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41204-018-0044-0", 
      "https://app.dimensions.ai/details/publication/pub.1107186298"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs41204-018-0044-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41204-018-0044-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41204-018-0044-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41204-018-0044-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41204-018-0044-0'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41204-018-0044-0 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ne237b4850d5a406a8ec227b906f0f22c
4 schema:citation sg:pub.10.1007/s10812-016-0272-7
5 sg:pub.10.1007/s11671-007-9060-x
6 sg:pub.10.1007/s41204-017-0019-6
7 sg:pub.10.1038/srep29836
8 sg:pub.10.1134/s0030400x16070043
9 sg:pub.10.1134/s0030400x17070189
10 https://doi.org/10.1016/j.apenergy.2017.08.144
11 https://doi.org/10.1016/j.enconman.2015.04.071
12 https://doi.org/10.1016/j.enconman.2016.01.009
13 https://doi.org/10.1016/j.enconman.2016.12.037
14 https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.014
15 https://doi.org/10.1016/j.rser.2015.09.060
16 https://doi.org/10.1016/j.rser.2016.04.050
17 https://doi.org/10.1016/j.rser.2017.01.015
18 https://doi.org/10.1016/j.solener.2013.12.004
19 https://doi.org/10.1016/j.solener.2015.01.031
20 https://doi.org/10.1016/j.solener.2015.09.022
21 https://doi.org/10.1016/j.solener.2016.06.023
22 https://doi.org/10.1021/la102912u
23 https://doi.org/10.1039/c4ra00630e
24 https://doi.org/10.1039/c6ra11130k
25 https://doi.org/10.1039/c6ra26979f
26 https://doi.org/10.1093/ijlct/ctw007
27 https://doi.org/10.1155/s1110662x03000278
28 https://doi.org/10.1364/ao.12.000555
29 https://doi.org/10.1364/ome.6.000640
30 schema:datePublished 2018-12
31 schema:datePublishedReg 2018-12-01
32 schema:description Theoretical investigation and selection of the optical properties of homogeneous metallic (titanium Ti, gold Au) and metal core–oxide shell (Ti–TiO2) nanoparticles with the radii 50, 75, 100 and 125 nm and their nanofluids have been carried out in the spectral interval 200–2500 nm for the purpose of effective absorption of solar radiation. Selected Ti and Ti–TiO2 nanoparticles with the radii 75–100 nm, in some cases up to 125 nm, are good absorbers in the visible and infrared spectral intervals and can be proposed for their use in solar thermal systems. Extinction and absorption of solar radiation by nanofluids (nanoparticles and water) are determined by the dominant influence of the system of Ti and Ti + TiO2 nanoparticles with concentration 109 cm−3 in the spectral interval 200–800 nm for the radii 50–75 nm and in interval 200–1100 nm for the radii 100–125 nm, and water dominantly influences the radiation extinction by nanofluid in the spectral range 1200–2500 nm.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N366d7c42bf63495ebea6397f33444088
37 N3b45c7eb852f444b8d54bbf211f06a16
38 sg:journal.1159324
39 schema:name Optical properties of nanoparticles and nanofluids for direct absorption of solar radiation
40 schema:pagination 15
41 schema:productId N5ef92405903d4da191c1fd71b5064c42
42 Nccb74d03f7a14753afa606592c91f15c
43 Ndc6853271a89445794be79f5340f09e5
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107186298
45 https://doi.org/10.1007/s41204-018-0044-0
46 schema:sdDatePublished 2019-04-10T19:13
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N9f7b0885969b4786aaeb23f6c129704a
49 schema:url http://link.springer.com/10.1007%2Fs41204-018-0044-0
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N2784c9855fe64dd38df766ce38e346a1 rdf:first sg:person.0651536303.97
54 rdf:rest rdf:nil
55 N366d7c42bf63495ebea6397f33444088 schema:volumeNumber 3
56 rdf:type schema:PublicationVolume
57 N3b45c7eb852f444b8d54bbf211f06a16 schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 N5ef92405903d4da191c1fd71b5064c42 schema:name doi
60 schema:value 10.1007/s41204-018-0044-0
61 rdf:type schema:PropertyValue
62 N9f7b0885969b4786aaeb23f6c129704a schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nccb74d03f7a14753afa606592c91f15c schema:name dimensions_id
65 schema:value pub.1107186298
66 rdf:type schema:PropertyValue
67 Ndc6853271a89445794be79f5340f09e5 schema:name readcube_id
68 schema:value a5af04fd73f0eeaa53a60121b169fbcb71055f89475a56740f9427fbb10e73a6
69 rdf:type schema:PropertyValue
70 Ne237b4850d5a406a8ec227b906f0f22c rdf:first sg:person.012416131515.30
71 rdf:rest N2784c9855fe64dd38df766ce38e346a1
72 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
73 schema:name Chemical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
76 schema:name Physical Chemistry (incl. Structural)
77 rdf:type schema:DefinedTerm
78 sg:journal.1159324 schema:issn 2365-6379
79 2365-6387
80 schema:name Nanotechnology for Environmental Engineering
81 rdf:type schema:Periodical
82 sg:person.012416131515.30 schema:affiliation https://www.grid.ac/institutes/grid.9427.8
83 schema:familyName Pustovalov
84 schema:givenName V. K.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012416131515.30
86 rdf:type schema:Person
87 sg:person.0651536303.97 schema:affiliation https://www.grid.ac/institutes/grid.426545.4
88 schema:familyName Astafyeva
89 schema:givenName L. G.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651536303.97
91 rdf:type schema:Person
92 sg:pub.10.1007/s10812-016-0272-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039716136
93 https://doi.org/10.1007/s10812-016-0272-7
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s11671-007-9060-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041218072
96 https://doi.org/10.1007/s11671-007-9060-x
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s41204-017-0019-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085886939
99 https://doi.org/10.1007/s41204-017-0019-6
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/srep29836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774372
102 https://doi.org/10.1038/srep29836
103 rdf:type schema:CreativeWork
104 sg:pub.10.1134/s0030400x16070043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033765269
105 https://doi.org/10.1134/s0030400x16070043
106 rdf:type schema:CreativeWork
107 sg:pub.10.1134/s0030400x17070189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090852158
108 https://doi.org/10.1134/s0030400x17070189
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.apenergy.2017.08.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091430409
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.enconman.2015.04.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013102079
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.enconman.2016.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029773338
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.enconman.2016.12.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014063238
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091911929
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.rser.2015.09.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007322029
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.rser.2016.04.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012795142
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.rser.2017.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047180123
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.solener.2013.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030195742
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.solener.2015.01.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017192102
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.solener.2015.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029682641
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.solener.2016.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031714530
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1021/la102912u schema:sameAs https://app.dimensions.ai/details/publication/pub.1003881420
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1039/c4ra00630e schema:sameAs https://app.dimensions.ai/details/publication/pub.1011290464
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1039/c6ra11130k schema:sameAs https://app.dimensions.ai/details/publication/pub.1038503934
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1039/c6ra26979f schema:sameAs https://app.dimensions.ai/details/publication/pub.1049595201
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/ijlct/ctw007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046132121
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1155/s1110662x03000278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044880715
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1364/ao.12.000555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015209772
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1364/ome.6.000640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015278335
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.426545.4 schema:alternateName BI Stepanov Institute of Physics
151 schema:name B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Pr. Independence, 68, 220072, Minsk, Belarus
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.9427.8 schema:alternateName Belarusian National Technical University
154 schema:name Belarusian National Technical University, Pr. Independency, 65, 220013, Minsk, Belarus
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...