A novel framework for community modeling and characterization in directed temporal networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Christian Bongiorno, Lorenzo Zino, Alessandro Rizzo

ABSTRACT

We deal with the problem of modeling and characterizing the community structure of complex systems. First, we propose a mathematical model for directed temporal networks based on the paradigm of activity driven networks. Many features of real-world systems are encapsulated in our model, such as hierarchical and overlapping community structures, heterogeneous attitude of nodes in behaving as sources or drains for connections, and the existence of a backbone of links that model dyadic relationships between nodes. Second, we develop a method for parameter identification of temporal networks based on the analysis of the integrated network of connections. Starting from any existing community detection algorithm, our method enriches the obtained solution by providing an in-depth characterization of the very nature of the role of nodes and communities in generating the temporal link structure. The proposed modeling and characterization framework is validated on three synthetic benchmarks and two real-world case studies. More... »

PAGES

10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41109-019-0119-2

DOI

http://dx.doi.org/10.1007/s41109-019-0119-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113109433


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.4800.c", 
          "name": [
            "Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bongiorno", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.4800.c", 
          "name": [
            "Department of Mathematical Sciences \u201cG.L. Lagrange\u201d, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zino", 
        "givenName": "Lorenzo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy", 
            "Office of Innovation, New York University Tandon School of Engineering, 11201, Brooklyn NY, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rizzo", 
        "givenName": "Alessandro", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1367-2630/11/3/033015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002733277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/3/033015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002733277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep04001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004366329", 
          "https://doi.org/10.1038/srep04001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12879-014-0695-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007893314", 
          "https://doi.org/10.1186/s12879-014-0695-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12879-014-0695-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007893314", 
          "https://doi.org/10.1186/s12879-014-0695-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010025359", 
          "https://doi.org/10.1038/nature05670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010025359", 
          "https://doi.org/10.1038/nature05670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.032807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012521282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.032807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012521282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0711437105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014320941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2015-60568-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014399194", 
          "https://doi.org/10.1140/epjb/e2015-60568-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.118702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015596368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.118702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015596368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0601602103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016125157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0706851105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017158516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0018961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017672111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2008.0218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017772043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.122653799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018411012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1073374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019781582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0610245104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025075085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.118703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025882695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.118703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025882695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026257515", 
          "https://doi.org/10.1038/srep00469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aad9029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031633083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep03006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031914603", 
          "https://doi.org/10.1038/srep03006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2012.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033711124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.87.925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034261529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.87.925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034261529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0023176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035430543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2008/10/p10008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037912856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2016.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046272828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0083489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047631687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1517441113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049599362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2016.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050878648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/12/123018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052493041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/12/123018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052493041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052911059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2010.11.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053059983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2015-60933-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053514411", 
          "https://doi.org/10.1140/epjb/e2015-60933-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.042801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.042801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.032308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060749256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.032308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060749256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.228302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.228302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2014.2364018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061297973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s003614450342480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s003614450342480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41109-017-0023-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083828851", 
          "https://doi.org/10.1007/s41109-017-0023-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41109-017-0023-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083828851", 
          "https://doi.org/10.1007/s41109-017-0023-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41109-017-0023-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083828851", 
          "https://doi.org/10.1007/s41109-017-0023-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41109-017-0023-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083828851", 
          "https://doi.org/10.1007/s41109-017-0023-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.95.052318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085641565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.95.052318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085641565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.96.042310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092423217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.96.042310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092423217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511804441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098700691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199591756.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098758225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/120/28002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100258912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-20908-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100727020", 
          "https://doi.org/10.1038/s41598-018-20908-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3172867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101133687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-29964-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106310229", 
          "https://doi.org/10.1038/s41598-018-29964-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/1069/1/012123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106434573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/1069/1/012123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106434573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13278-018-0537-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107372675", 
          "https://doi.org/10.1007/s13278-018-0537-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.121.228301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110268357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.121.228301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110268357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.121.228301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110268357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnse.2018.2885483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110427951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnse.2018.2885483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110427951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/18m1171485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110541237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.2018.8619441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111604476"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "We deal with the problem of modeling and characterizing the community structure of complex systems. First, we propose a mathematical model for directed temporal networks based on the paradigm of activity driven networks. Many features of real-world systems are encapsulated in our model, such as hierarchical and overlapping community structures, heterogeneous attitude of nodes in behaving as sources or drains for connections, and the existence of a backbone of links that model dyadic relationships between nodes. Second, we develop a method for parameter identification of temporal networks based on the analysis of the integrated network of connections. Starting from any existing community detection algorithm, our method enriches the obtained solution by providing an in-depth characterization of the very nature of the role of nodes and communities in generating the temporal link structure. The proposed modeling and characterization framework is validated on three synthetic benchmarks and two real-world case studies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s41109-019-0119-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1158525", 
        "issn": [
          "2364-8228"
        ], 
        "name": "Applied Network Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "A novel framework for community modeling and characterization in directed temporal networks", 
    "pagination": "10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a71a88abb0f0a1c71d568c139343e46050ceed25203a410bfeaec1d2d99d869a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41109-019-0119-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113109433"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41109-019-0119-2", 
      "https://app.dimensions.ai/details/publication/pub.1113109433"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68962_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs41109-019-0119-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41109-019-0119-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41109-019-0119-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41109-019-0119-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41109-019-0119-2'


 

This table displays all metadata directly associated to this object as RDF triples.

244 TRIPLES      21 PREDICATES      79 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41109-019-0119-2 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nfbcb913f2e7d406c9eece82de78cfdac
4 schema:citation sg:pub.10.1007/s13278-018-0537-7
5 sg:pub.10.1007/s41109-017-0023-6
6 sg:pub.10.1038/nature03607
7 sg:pub.10.1038/nature05670
8 sg:pub.10.1038/s41598-018-20908-x
9 sg:pub.10.1038/s41598-018-29964-9
10 sg:pub.10.1038/srep00469
11 sg:pub.10.1038/srep03006
12 sg:pub.10.1038/srep04001
13 sg:pub.10.1140/epjb/e2015-60568-4
14 sg:pub.10.1140/epjb/e2015-60933-3
15 sg:pub.10.1186/s12879-014-0695-9
16 https://doi.org/10.1016/j.jtbi.2016.01.015
17 https://doi.org/10.1016/j.physrep.2012.03.001
18 https://doi.org/10.1016/j.physrep.2016.09.002
19 https://doi.org/10.1016/j.tcs.2010.11.041
20 https://doi.org/10.1017/cbo9780511804441
21 https://doi.org/10.1073/pnas.0601602103
22 https://doi.org/10.1073/pnas.0610245104
23 https://doi.org/10.1073/pnas.0706851105
24 https://doi.org/10.1073/pnas.0711437105
25 https://doi.org/10.1073/pnas.122653799
26 https://doi.org/10.1073/pnas.1517441113
27 https://doi.org/10.1088/1367-2630/11/12/123018
28 https://doi.org/10.1088/1367-2630/11/3/033015
29 https://doi.org/10.1088/1742-5468/2008/10/p10008
30 https://doi.org/10.1088/1742-6596/1069/1/012123
31 https://doi.org/10.1093/acprof:oso/9780199591756.001.0001
32 https://doi.org/10.1098/rsif.2008.0218
33 https://doi.org/10.1103/physreve.89.032807
34 https://doi.org/10.1103/physreve.90.042801
35 https://doi.org/10.1103/physreve.93.032308
36 https://doi.org/10.1103/physreve.95.052318
37 https://doi.org/10.1103/physreve.96.042310
38 https://doi.org/10.1103/physrevlett.100.118703
39 https://doi.org/10.1103/physrevlett.112.118702
40 https://doi.org/10.1103/physrevlett.117.228302
41 https://doi.org/10.1103/physrevlett.121.228301
42 https://doi.org/10.1103/revmodphys.87.925
43 https://doi.org/10.1109/cdc.2018.8619441
44 https://doi.org/10.1109/jproc.2014.2364018
45 https://doi.org/10.1109/tnse.2018.2885483
46 https://doi.org/10.1126/science.1073374
47 https://doi.org/10.1126/science.aad9029
48 https://doi.org/10.1137/18m1171485
49 https://doi.org/10.1137/s003614450342480
50 https://doi.org/10.1145/3172867
51 https://doi.org/10.1209/0295-5075/120/28002
52 https://doi.org/10.1371/journal.pcbi.1000736
53 https://doi.org/10.1371/journal.pone.0018961
54 https://doi.org/10.1371/journal.pone.0023176
55 https://doi.org/10.1371/journal.pone.0083489
56 schema:datePublished 2019-12
57 schema:datePublishedReg 2019-12-01
58 schema:description We deal with the problem of modeling and characterizing the community structure of complex systems. First, we propose a mathematical model for directed temporal networks based on the paradigm of activity driven networks. Many features of real-world systems are encapsulated in our model, such as hierarchical and overlapping community structures, heterogeneous attitude of nodes in behaving as sources or drains for connections, and the existence of a backbone of links that model dyadic relationships between nodes. Second, we develop a method for parameter identification of temporal networks based on the analysis of the integrated network of connections. Starting from any existing community detection algorithm, our method enriches the obtained solution by providing an in-depth characterization of the very nature of the role of nodes and communities in generating the temporal link structure. The proposed modeling and characterization framework is validated on three synthetic benchmarks and two real-world case studies.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree false
62 schema:isPartOf N58be61ee30e841f489a107f074625be3
63 Nddd4febd47df4517985461ba2aa80507
64 sg:journal.1158525
65 schema:name A novel framework for community modeling and characterization in directed temporal networks
66 schema:pagination 10
67 schema:productId N20e3f2b6a105471c89f22bf3b515191c
68 Nc44a04e288d841aab9b3ec49c743daad
69 Nfd828a75536c4673b1c006f29bd0a70d
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113109433
71 https://doi.org/10.1007/s41109-019-0119-2
72 schema:sdDatePublished 2019-04-11T13:24
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N7faffbf3e8f4422c86dd7c74a5483db3
75 schema:url https://link.springer.com/10.1007%2Fs41109-019-0119-2
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N20e3f2b6a105471c89f22bf3b515191c schema:name dimensions_id
80 schema:value pub.1113109433
81 rdf:type schema:PropertyValue
82 N58be61ee30e841f489a107f074625be3 schema:volumeNumber 4
83 rdf:type schema:PublicationVolume
84 N7dfe8d4d6bdf4dcda6c15186e3f110a3 schema:affiliation https://www.grid.ac/institutes/grid.4800.c
85 schema:familyName Zino
86 schema:givenName Lorenzo
87 rdf:type schema:Person
88 N7faffbf3e8f4422c86dd7c74a5483db3 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N867357b586944ee583e6bf0fe5233a6b rdf:first Nbc78baed707c45f3925a84903e881d2d
91 rdf:rest rdf:nil
92 N93f6e13e47194684a3b799e93269041a schema:affiliation https://www.grid.ac/institutes/grid.4800.c
93 schema:familyName Bongiorno
94 schema:givenName Christian
95 rdf:type schema:Person
96 Nbc78baed707c45f3925a84903e881d2d schema:affiliation https://www.grid.ac/institutes/grid.137628.9
97 schema:familyName Rizzo
98 schema:givenName Alessandro
99 rdf:type schema:Person
100 Nc44a04e288d841aab9b3ec49c743daad schema:name readcube_id
101 schema:value a71a88abb0f0a1c71d568c139343e46050ceed25203a410bfeaec1d2d99d869a
102 rdf:type schema:PropertyValue
103 Ncbf4dc9b9205460ca73b517d13d42807 rdf:first N7dfe8d4d6bdf4dcda6c15186e3f110a3
104 rdf:rest N867357b586944ee583e6bf0fe5233a6b
105 Nddd4febd47df4517985461ba2aa80507 schema:issueNumber 1
106 rdf:type schema:PublicationIssue
107 Nfbcb913f2e7d406c9eece82de78cfdac rdf:first N93f6e13e47194684a3b799e93269041a
108 rdf:rest Ncbf4dc9b9205460ca73b517d13d42807
109 Nfd828a75536c4673b1c006f29bd0a70d schema:name doi
110 schema:value 10.1007/s41109-019-0119-2
111 rdf:type schema:PropertyValue
112 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
113 schema:name Information and Computing Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
116 schema:name Information Systems
117 rdf:type schema:DefinedTerm
118 sg:journal.1158525 schema:issn 2364-8228
119 schema:name Applied Network Science
120 rdf:type schema:Periodical
121 sg:pub.10.1007/s13278-018-0537-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107372675
122 https://doi.org/10.1007/s13278-018-0537-7
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s41109-017-0023-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083828851
125 https://doi.org/10.1007/s41109-017-0023-6
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nature03607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032155732
128 https://doi.org/10.1038/nature03607
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nature05670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010025359
131 https://doi.org/10.1038/nature05670
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/s41598-018-20908-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1100727020
134 https://doi.org/10.1038/s41598-018-20908-x
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/s41598-018-29964-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106310229
137 https://doi.org/10.1038/s41598-018-29964-9
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/srep00469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026257515
140 https://doi.org/10.1038/srep00469
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/srep03006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031914603
143 https://doi.org/10.1038/srep03006
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/srep04001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004366329
146 https://doi.org/10.1038/srep04001
147 rdf:type schema:CreativeWork
148 sg:pub.10.1140/epjb/e2015-60568-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014399194
149 https://doi.org/10.1140/epjb/e2015-60568-4
150 rdf:type schema:CreativeWork
151 sg:pub.10.1140/epjb/e2015-60933-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053514411
152 https://doi.org/10.1140/epjb/e2015-60933-3
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/s12879-014-0695-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007893314
155 https://doi.org/10.1186/s12879-014-0695-9
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.jtbi.2016.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050878648
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.physrep.2012.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033711124
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.physrep.2016.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046272828
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.tcs.2010.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053059983
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1017/cbo9780511804441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098700691
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1073/pnas.0601602103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016125157
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1073/pnas.0610245104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025075085
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1073/pnas.0706851105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017158516
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1073/pnas.0711437105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014320941
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1073/pnas.122653799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411012
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1073/pnas.1517441113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049599362
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1088/1367-2630/11/12/123018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052493041
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1088/1367-2630/11/3/033015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002733277
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1088/1742-5468/2008/10/p10008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037912856
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1088/1742-6596/1069/1/012123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106434573
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/acprof:oso/9780199591756.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098758225
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1098/rsif.2008.0218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017772043
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physreve.89.032807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012521282
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physreve.90.042801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060746745
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physreve.93.032308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060749256
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physreve.95.052318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085641565
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physreve.96.042310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092423217
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.100.118703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025882695
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevlett.112.118702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015596368
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevlett.117.228302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060766817
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevlett.121.228301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110268357
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/revmodphys.87.925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034261529
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/cdc.2018.8619441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111604476
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/jproc.2014.2364018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061297973
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/tnse.2018.2885483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110427951
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1126/science.1073374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019781582
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1126/science.aad9029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031633083
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1137/18m1171485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110541237
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1137/s003614450342480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877811
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1145/3172867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101133687
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1209/0295-5075/120/28002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100258912
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1371/journal.pcbi.1000736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052911059
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1371/journal.pone.0018961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017672111
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1371/journal.pone.0023176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035430543
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1371/journal.pone.0083489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047631687
236 rdf:type schema:CreativeWork
237 https://www.grid.ac/institutes/grid.137628.9 schema:alternateName New York University
238 schema:name Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
239 Office of Innovation, New York University Tandon School of Engineering, 11201, Brooklyn NY, US
240 rdf:type schema:Organization
241 https://www.grid.ac/institutes/grid.4800.c schema:alternateName Polytechnic University of Turin
242 schema:name Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
243 Department of Mathematical Sciences “G.L. Lagrange”, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
244 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...