Entropy-based approach to missing-links prediction View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Federica Parisi, Guido Caldarelli, Tiziano Squartini

ABSTRACT

Link-prediction is an active research field within network theory, aiming at uncovering missing connections or predicting the emergence of future relationships from the observed network structure. This paper represents our contribution to the stream of research concerning missing links prediction. Here, we propose an entropy-based method to predict a given percentage of missing links, by identifying them with the most probable non-observed ones. The probability coefficients are computed by solving opportunely defined null-models over the accessible network structure. Upon comparing our likelihood-based, local method with the most popular algorithms over a set of economic, financial and food networks, we find ours to perform best, as pointed out by a number of statistical indicators (e.g. the precision, the area under the ROC curve, etc.). Moreover, the entropy-based formalism adopted in the present paper allows us to straightforwardly extend the link-prediction exercise to directed networks as well, thus overcoming one of the main limitations of current algorithms. The higher accuracy achievable by employing these methods - together with their larger flexibility - makes them strong competitors of available link-prediction algorithms. More... »

PAGES

17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41109-018-0073-4

DOI

http://dx.doi.org/10.1007/s41109-018-0073-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105433989


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IMT Institute for Advanced Studies Lucca", 
          "id": "https://www.grid.ac/institutes/grid.462365.0", 
          "name": [
            "IMT School for Advanced Studies Lucca, Piazza S.Francesco 19, 55100, Lucca, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parisi", 
        "givenName": "Federica", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "IMT School for Advanced Studies Lucca, Piazza S.Francesco 19, 55100, Lucca, Italy", 
            "Istituto dei Sistemi Complessi (ISC) - CNR, UoS Sapienza, Dipartimento di Fisica, Universit\u00e0\u0103 \u201cSapienza\u201d, P.le Aldo Moro 5, 00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caldarelli", 
        "givenName": "Guido", 
        "id": "sg:person.01361040750.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361040750.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IMT Institute for Advanced Studies Lucca", 
          "id": "https://www.grid.ac/institutes/grid.462365.0", 
          "name": [
            "IMT School for Advanced Studies Lucca, Piazza S.Francesco 19, 55100, Lucca, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Squartini", 
        "givenName": "Tiziano", 
        "id": "sg:person.013675241134.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013675241134.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep12261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006441352", 
          "https://doi.org/10.1038/srep12261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep22955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006608090", 
          "https://doi.org/10.1038/srep22955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2010.11.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007629390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep09794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009056324", 
          "https://doi.org/10.1038/srep09794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13278-014-0157-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009823100", 
          "https://doi.org/10.1007/s13278-014-0157-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014662264", 
          "https://doi.org/10.1038/nbt.2601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.015101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014703281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.015101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014703281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0908366106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017798131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jebo.2004.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020996884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/13/8/083001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028317587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.20591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030734435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0154244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030996018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0154244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030996018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1424644112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034071105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.066117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035063358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.066117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035063358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbankfin.2014.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036395727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.046118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037702649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.046118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037702649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-8733(03)00009-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044500193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-8733(03)00009-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044500193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2009-00335-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046414814", 
          "https://doi.org/10.1140/epjb/e2009-00335-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2009-00335-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046414814", 
          "https://doi.org/10.1140/epjb/e2009-00335-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0107056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047544240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.040802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049780200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.040802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049780200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2015.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051104518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051171362", 
          "https://doi.org/10.1007/bf02289026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051171362", 
          "https://doi.org/10.1007/bf02289026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0022002702046005006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063625330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0022002702046005006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063625330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41109-017-0022-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074237077", 
          "https://doi.org/10.1007/s41109-017-0022-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41109-017-0022-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074237077", 
          "https://doi.org/10.1007/s41109-017-0022-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41109-017-0022-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074237077", 
          "https://doi.org/10.1007/s41109-017-0022-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41109-017-0022-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074237077", 
          "https://doi.org/10.1007/s41109-017-0022-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsos.160863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083752979"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Link-prediction is an active research field within network theory, aiming at uncovering missing connections or predicting the emergence of future relationships from the observed network structure. This paper represents our contribution to the stream of research concerning missing links prediction. Here, we propose an entropy-based method to predict a given percentage of missing links, by identifying them with the most probable non-observed ones. The probability coefficients are computed by solving opportunely defined null-models over the accessible network structure. Upon comparing our likelihood-based, local method with the most popular algorithms over a set of economic, financial and food networks, we find ours to perform best, as pointed out by a number of statistical indicators (e.g. the precision, the area under the ROC curve, etc.). Moreover, the entropy-based formalism adopted in the present paper allows us to straightforwardly extend the link-prediction exercise to directed networks as well, thus overcoming one of the main limitations of current algorithms. The higher accuracy achievable by employing these methods - together with their larger flexibility - makes them strong competitors of available link-prediction algorithms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s41109-018-0073-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4273829", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3791124", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6447186", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3938306", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1158525", 
        "issn": [
          "2364-8228"
        ], 
        "name": "Applied Network Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Entropy-based approach to missing-links prediction", 
    "pagination": "17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5676b46de157fae6175221106d01d37d0f14db3149479a0f491d018339845dc3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41109-018-0073-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105433989"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41109-018-0073-4", 
      "https://app.dimensions.ai/details/publication/pub.1105433989"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89819_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs41109-018-0073-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41109-018-0073-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41109-018-0073-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41109-018-0073-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41109-018-0073-4'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41109-018-0073-4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N3a89ef9f64bb4814bb9ba403f6529f8e
4 schema:citation sg:pub.10.1007/bf02289026
5 sg:pub.10.1007/s13278-014-0157-9
6 sg:pub.10.1007/s41109-017-0022-7
7 sg:pub.10.1038/nbt.2601
8 sg:pub.10.1038/srep09794
9 sg:pub.10.1038/srep12261
10 sg:pub.10.1038/srep22955
11 sg:pub.10.1140/epjb/e2009-00335-8
12 https://doi.org/10.1002/asi.20591
13 https://doi.org/10.1016/j.jbankfin.2014.08.006
14 https://doi.org/10.1016/j.jebo.2004.07.018
15 https://doi.org/10.1016/j.physa.2010.11.027
16 https://doi.org/10.1016/j.physa.2015.05.009
17 https://doi.org/10.1016/s0378-8733(03)00009-1
18 https://doi.org/10.1073/pnas.0908366106
19 https://doi.org/10.1073/pnas.1424644112
20 https://doi.org/10.1088/1367-2630/13/8/083001
21 https://doi.org/10.1098/rsos.160863
22 https://doi.org/10.1103/physreve.70.066117
23 https://doi.org/10.1103/physreve.78.015101
24 https://doi.org/10.1103/physreve.84.046118
25 https://doi.org/10.1103/physreve.92.040802
26 https://doi.org/10.1126/science.286.5439.509
27 https://doi.org/10.1177/0022002702046005006
28 https://doi.org/10.1371/journal.pone.0107056
29 https://doi.org/10.1371/journal.pone.0154244
30 schema:datePublished 2018-12
31 schema:datePublishedReg 2018-12-01
32 schema:description Link-prediction is an active research field within network theory, aiming at uncovering missing connections or predicting the emergence of future relationships from the observed network structure. This paper represents our contribution to the stream of research concerning missing links prediction. Here, we propose an entropy-based method to predict a given percentage of missing links, by identifying them with the most probable non-observed ones. The probability coefficients are computed by solving opportunely defined null-models over the accessible network structure. Upon comparing our likelihood-based, local method with the most popular algorithms over a set of economic, financial and food networks, we find ours to perform best, as pointed out by a number of statistical indicators (e.g. the precision, the area under the ROC curve, etc.). Moreover, the entropy-based formalism adopted in the present paper allows us to straightforwardly extend the link-prediction exercise to directed networks as well, thus overcoming one of the main limitations of current algorithms. The higher accuracy achievable by employing these methods - together with their larger flexibility - makes them strong competitors of available link-prediction algorithms.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf Nb80797bd399d46fbb3e5f7af6adcb1ef
37 Nd62928ac0ae4404498bf5c3ea6cc92fb
38 sg:journal.1158525
39 schema:name Entropy-based approach to missing-links prediction
40 schema:pagination 17
41 schema:productId N7ef9067ab4c8430aaa551f8897d48f95
42 Nafeba271d75449989f579c4b0c6fe9b8
43 Nd3a296e06a344819b3ac2e3938b4af48
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105433989
45 https://doi.org/10.1007/s41109-018-0073-4
46 schema:sdDatePublished 2019-04-11T10:01
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Ne72b660d1ea64dbdb43411fdda86381a
49 schema:url https://link.springer.com/10.1007%2Fs41109-018-0073-4
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N3a89ef9f64bb4814bb9ba403f6529f8e rdf:first Nf6b9c09f72304975b1c9120d9ed5ae1a
54 rdf:rest N3f8d5fdc6a714223bd17337df972ea40
55 N3f8d5fdc6a714223bd17337df972ea40 rdf:first sg:person.01361040750.65
56 rdf:rest Nee3a8179097d4cb7a7e7d54f727d6d67
57 N7ef9067ab4c8430aaa551f8897d48f95 schema:name readcube_id
58 schema:value 5676b46de157fae6175221106d01d37d0f14db3149479a0f491d018339845dc3
59 rdf:type schema:PropertyValue
60 Nafeba271d75449989f579c4b0c6fe9b8 schema:name doi
61 schema:value 10.1007/s41109-018-0073-4
62 rdf:type schema:PropertyValue
63 Nb80797bd399d46fbb3e5f7af6adcb1ef schema:volumeNumber 3
64 rdf:type schema:PublicationVolume
65 Nd3a296e06a344819b3ac2e3938b4af48 schema:name dimensions_id
66 schema:value pub.1105433989
67 rdf:type schema:PropertyValue
68 Nd62928ac0ae4404498bf5c3ea6cc92fb schema:issueNumber 1
69 rdf:type schema:PublicationIssue
70 Ne72b660d1ea64dbdb43411fdda86381a schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nee3a8179097d4cb7a7e7d54f727d6d67 rdf:first sg:person.013675241134.76
73 rdf:rest rdf:nil
74 Nf6b9c09f72304975b1c9120d9ed5ae1a schema:affiliation https://www.grid.ac/institutes/grid.462365.0
75 schema:familyName Parisi
76 schema:givenName Federica
77 rdf:type schema:Person
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
82 schema:name Statistics
83 rdf:type schema:DefinedTerm
84 sg:grant.3791124 http://pending.schema.org/fundedItem sg:pub.10.1007/s41109-018-0073-4
85 rdf:type schema:MonetaryGrant
86 sg:grant.3938306 http://pending.schema.org/fundedItem sg:pub.10.1007/s41109-018-0073-4
87 rdf:type schema:MonetaryGrant
88 sg:grant.4273829 http://pending.schema.org/fundedItem sg:pub.10.1007/s41109-018-0073-4
89 rdf:type schema:MonetaryGrant
90 sg:grant.6447186 http://pending.schema.org/fundedItem sg:pub.10.1007/s41109-018-0073-4
91 rdf:type schema:MonetaryGrant
92 sg:journal.1158525 schema:issn 2364-8228
93 schema:name Applied Network Science
94 rdf:type schema:Periodical
95 sg:person.01361040750.65 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
96 schema:familyName Caldarelli
97 schema:givenName Guido
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361040750.65
99 rdf:type schema:Person
100 sg:person.013675241134.76 schema:affiliation https://www.grid.ac/institutes/grid.462365.0
101 schema:familyName Squartini
102 schema:givenName Tiziano
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013675241134.76
104 rdf:type schema:Person
105 sg:pub.10.1007/bf02289026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051171362
106 https://doi.org/10.1007/bf02289026
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s13278-014-0157-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009823100
109 https://doi.org/10.1007/s13278-014-0157-9
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s41109-017-0022-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074237077
112 https://doi.org/10.1007/s41109-017-0022-7
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nbt.2601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014662264
115 https://doi.org/10.1038/nbt.2601
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/srep09794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009056324
118 https://doi.org/10.1038/srep09794
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/srep12261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006441352
121 https://doi.org/10.1038/srep12261
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/srep22955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006608090
124 https://doi.org/10.1038/srep22955
125 rdf:type schema:CreativeWork
126 sg:pub.10.1140/epjb/e2009-00335-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046414814
127 https://doi.org/10.1140/epjb/e2009-00335-8
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/asi.20591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030734435
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.jbankfin.2014.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036395727
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jebo.2004.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020996884
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.physa.2010.11.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007629390
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.physa.2015.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051104518
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0378-8733(03)00009-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044500193
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1073/pnas.0908366106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017798131
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1073/pnas.1424644112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034071105
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1088/1367-2630/13/8/083001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028317587
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1098/rsos.160863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083752979
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physreve.70.066117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035063358
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physreve.78.015101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014703281
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physreve.84.046118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037702649
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physreve.92.040802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049780200
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1177/0022002702046005006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063625330
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1371/journal.pone.0107056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047544240
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1371/journal.pone.0154244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030996018
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.462365.0 schema:alternateName IMT Institute for Advanced Studies Lucca
166 schema:name IMT School for Advanced Studies Lucca, Piazza S.Francesco 19, 55100, Lucca, Italy
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
169 schema:name IMT School for Advanced Studies Lucca, Piazza S.Francesco 19, 55100, Lucca, Italy
170 Istituto dei Sistemi Complessi (ISC) - CNR, UoS Sapienza, Dipartimento di Fisica, Universitàă “Sapienza”, P.le Aldo Moro 5, 00185, Rome, Italy
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...