The paradigm of induced ordered weighted averaging aggregation process with application in uncertain linguistic evaluation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10-01

AUTHORS

Lesheng Jin, Radko Mesiar, Ronald R. Yager

ABSTRACT

Induced ordered weighted averaging is a powerful tool in decision making, and different inducing variables generally determine different types of IOWA. The existing studies and applications of IOWA often is non-systematical and decision makers may often be confused with several problems such as how to effectively and fast determine and obtain inducing variable, how to handle the situation where tied values appears for inducing values, and how to more flexibly use IOWA in real applications. In this study, to address those problems, we propose the paradigm of Induced Ordered Weighted Averaging aggregation process. The paradigm includes three major stages, information gathering and preparation, information determination, and information aggregation; and each of those stages also includes several detailed steps. An illustrative instance in journal peer reviewing and evaluating problem, including all detailed steps in the paradigm of IOWA process, is also presented. More... »

PAGES

1-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41066-018-0135-0

DOI

http://dx.doi.org/10.1007/s41066-018-0135-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107347185


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing Normal University", 
          "id": "https://www.grid.ac/institutes/grid.260474.3", 
          "name": [
            "Business School, Nanjing Normal University, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Lesheng", 
        "id": "sg:person.012751531517.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012751531517.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Palack\u00fd University, Olomouc", 
          "id": "https://www.grid.ac/institutes/grid.10979.36", 
          "name": [
            "Faculty of Civil Engineering, Slovak University of Technology, Radlinsk\u00e9ho 11, 810 05, Bratislava, Slovakia", 
            "Department Algebra and Geometry, Palacky University Olomouc, Faculty Science, 17 Listopadu 12, 77146, Olomouc, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mesiar", 
        "givenName": "Radko", 
        "id": "sg:person.013374353164.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374353164.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Iona College", 
          "id": "https://www.grid.ac/institutes/grid.419406.e", 
          "name": [
            "Machine Intelligence Institute, Iona College, 10801, New Rochelle, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yager", 
        "givenName": "Ronald R.", 
        "id": "sg:person.013053446326.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013053446326.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s41066-016-0021-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000430568", 
          "https://doi.org/10.1007/s41066-016-0021-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41066-016-0021-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000430568", 
          "https://doi.org/10.1007/s41066-016-0021-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-111x(199601)11:1<49::aid-int3>3.0.co;2-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004046887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2013.08.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011153906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(93)90194-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011541460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(93)90194-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011541460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2008.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011932371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2014.07.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015821233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0114(02)00432-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016324260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0114(02)00432-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016324260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:reom.0000032115.22510.b5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022175266", 
          "https://doi.org/10.1023/b:reom.0000032115.22510.b5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1025931387", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-9540-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025931387", 
          "https://doi.org/10.1007/978-94-015-9540-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-9540-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025931387", 
          "https://doi.org/10.1007/978-94-015-9540-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2007.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025943535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268970500067880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029784999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2016.04.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034262670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2015.05.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046668933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081079208945024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046760734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41066-016-0030-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046974835", 
          "https://doi.org/10.1007/s41066-016-0030-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41066-016-0030-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046974835", 
          "https://doi.org/10.1007/s41066-016-0030-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.21829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049499342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081079008935110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051635291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2014.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052121826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.21869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052823507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/21.87068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061122429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3477.752789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061158315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3477.907562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061158488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2016.2634599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061580506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2008.917299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2009.2035812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2015.2406888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2015.2450772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061607016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2016.2617371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061607234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.2014.2314724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061794193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41066-017-0039-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084813992", 
          "https://doi.org/10.1007/s41066-017-0039-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41066-017-0039-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084813992", 
          "https://doi.org/10.1007/s41066-017-0039-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2017.2654482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086111987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.21927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091225824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2017.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091322461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2017.2756828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091965255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139644150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098777020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.21961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100832373"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-01", 
    "datePublishedReg": "2018-10-01", 
    "description": "Induced ordered weighted averaging is a powerful tool in decision making, and different inducing variables generally determine different types of IOWA. The existing studies and applications of IOWA often is non-systematical and decision makers may often be confused with several problems such as how to effectively and fast determine and obtain inducing variable, how to handle the situation where tied values appears for inducing values, and how to more flexibly use IOWA in real applications. In this study, to address those problems, we propose the paradigm of Induced Ordered Weighted Averaging aggregation process. The paradigm includes three major stages, information gathering and preparation, information determination, and information aggregation; and each of those stages also includes several detailed steps. An illustrative instance in journal peer reviewing and evaluating problem, including all detailed steps in the paradigm of IOWA process, is also presented.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s41066-018-0135-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1154931", 
        "issn": [
          "2364-4966", 
          "2364-4974"
        ], 
        "name": "Granular Computing", 
        "type": "Periodical"
      }
    ], 
    "name": "The paradigm of induced ordered weighted averaging aggregation process with application in uncertain linguistic evaluation", 
    "pagination": "1-7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c675d4311e99de5d84b885301ee681f59495baa4bb46684af75124b2db946652"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41066-018-0135-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107347185"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41066-018-0135-0", 
      "https://app.dimensions.ai/details/publication/pub.1107347185"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000544.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs41066-018-0135-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41066-018-0135-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41066-018-0135-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41066-018-0135-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41066-018-0135-0'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      61 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41066-018-0135-0 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Ned6b56f4594a492c92ba5dbc47df667f
4 schema:citation sg:pub.10.1007/978-94-015-9540-7
5 sg:pub.10.1007/s41066-016-0021-6
6 sg:pub.10.1007/s41066-016-0030-5
7 sg:pub.10.1007/s41066-017-0039-4
8 sg:pub.10.1023/b:reom.0000032115.22510.b5
9 https://app.dimensions.ai/details/publication/pub.1025931387
10 https://doi.org/10.1002/(sici)1098-111x(199601)11:1<49::aid-int3>3.0.co;2-z
11 https://doi.org/10.1002/int.21829
12 https://doi.org/10.1002/int.21869
13 https://doi.org/10.1002/int.21927
14 https://doi.org/10.1002/int.21961
15 https://doi.org/10.1016/0165-0114(93)90194-m
16 https://doi.org/10.1016/j.eswa.2007.05.009
17 https://doi.org/10.1016/j.fss.2014.04.019
18 https://doi.org/10.1016/j.fss.2016.04.017
19 https://doi.org/10.1016/j.fss.2017.08.007
20 https://doi.org/10.1016/j.ins.2008.11.013
21 https://doi.org/10.1016/j.ins.2013.08.042
22 https://doi.org/10.1016/j.ins.2014.07.033
23 https://doi.org/10.1016/j.ins.2015.05.021
24 https://doi.org/10.1016/s0165-0114(02)00432-3
25 https://doi.org/10.1017/cbo9781139644150
26 https://doi.org/10.1080/00268970500067880
27 https://doi.org/10.1080/03081079008935110
28 https://doi.org/10.1080/03081079208945024
29 https://doi.org/10.1109/21.87068
30 https://doi.org/10.1109/3477.752789
31 https://doi.org/10.1109/3477.907562
32 https://doi.org/10.1109/tcyb.2016.2634599
33 https://doi.org/10.1109/tfuzz.2008.917299
34 https://doi.org/10.1109/tfuzz.2009.2035812
35 https://doi.org/10.1109/tfuzz.2015.2406888
36 https://doi.org/10.1109/tfuzz.2015.2450772
37 https://doi.org/10.1109/tfuzz.2016.2617371
38 https://doi.org/10.1109/tfuzz.2017.2654482
39 https://doi.org/10.1109/tfuzz.2017.2756828
40 https://doi.org/10.1109/tsmc.2014.2314724
41 schema:datePublished 2018-10-01
42 schema:datePublishedReg 2018-10-01
43 schema:description Induced ordered weighted averaging is a powerful tool in decision making, and different inducing variables generally determine different types of IOWA. The existing studies and applications of IOWA often is non-systematical and decision makers may often be confused with several problems such as how to effectively and fast determine and obtain inducing variable, how to handle the situation where tied values appears for inducing values, and how to more flexibly use IOWA in real applications. In this study, to address those problems, we propose the paradigm of Induced Ordered Weighted Averaging aggregation process. The paradigm includes three major stages, information gathering and preparation, information determination, and information aggregation; and each of those stages also includes several detailed steps. An illustrative instance in journal peer reviewing and evaluating problem, including all detailed steps in the paradigm of IOWA process, is also presented.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf sg:journal.1154931
48 schema:name The paradigm of induced ordered weighted averaging aggregation process with application in uncertain linguistic evaluation
49 schema:pagination 1-7
50 schema:productId N26d987e1bba44f8e94423a3630b0659b
51 N7335e814095a44b5ad908e6856f3f901
52 Ncf6888f3f5f444d4bfb5ba77ce4fcd1d
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107347185
54 https://doi.org/10.1007/s41066-018-0135-0
55 schema:sdDatePublished 2019-04-10T20:03
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N0b552116117c4c3d9efd4920de32e489
58 schema:url https://link.springer.com/10.1007%2Fs41066-018-0135-0
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0b552116117c4c3d9efd4920de32e489 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N26d987e1bba44f8e94423a3630b0659b schema:name doi
65 schema:value 10.1007/s41066-018-0135-0
66 rdf:type schema:PropertyValue
67 N5430eb777c434c028d487c761481c404 rdf:first sg:person.013374353164.75
68 rdf:rest Nb1afc9694103411e94d81e204f6ebeff
69 N7335e814095a44b5ad908e6856f3f901 schema:name readcube_id
70 schema:value c675d4311e99de5d84b885301ee681f59495baa4bb46684af75124b2db946652
71 rdf:type schema:PropertyValue
72 Nb1afc9694103411e94d81e204f6ebeff rdf:first sg:person.013053446326.16
73 rdf:rest rdf:nil
74 Ncf6888f3f5f444d4bfb5ba77ce4fcd1d schema:name dimensions_id
75 schema:value pub.1107347185
76 rdf:type schema:PropertyValue
77 Ned6b56f4594a492c92ba5dbc47df667f rdf:first sg:person.012751531517.76
78 rdf:rest N5430eb777c434c028d487c761481c404
79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
80 schema:name Information and Computing Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information Systems
84 rdf:type schema:DefinedTerm
85 sg:journal.1154931 schema:issn 2364-4966
86 2364-4974
87 schema:name Granular Computing
88 rdf:type schema:Periodical
89 sg:person.012751531517.76 schema:affiliation https://www.grid.ac/institutes/grid.260474.3
90 schema:familyName Jin
91 schema:givenName Lesheng
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012751531517.76
93 rdf:type schema:Person
94 sg:person.013053446326.16 schema:affiliation https://www.grid.ac/institutes/grid.419406.e
95 schema:familyName Yager
96 schema:givenName Ronald R.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013053446326.16
98 rdf:type schema:Person
99 sg:person.013374353164.75 schema:affiliation https://www.grid.ac/institutes/grid.10979.36
100 schema:familyName Mesiar
101 schema:givenName Radko
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374353164.75
103 rdf:type schema:Person
104 sg:pub.10.1007/978-94-015-9540-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025931387
105 https://doi.org/10.1007/978-94-015-9540-7
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s41066-016-0021-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000430568
108 https://doi.org/10.1007/s41066-016-0021-6
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s41066-016-0030-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046974835
111 https://doi.org/10.1007/s41066-016-0030-5
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s41066-017-0039-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084813992
114 https://doi.org/10.1007/s41066-017-0039-4
115 rdf:type schema:CreativeWork
116 sg:pub.10.1023/b:reom.0000032115.22510.b5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022175266
117 https://doi.org/10.1023/b:reom.0000032115.22510.b5
118 rdf:type schema:CreativeWork
119 https://app.dimensions.ai/details/publication/pub.1025931387 schema:CreativeWork
120 https://doi.org/10.1002/(sici)1098-111x(199601)11:1<49::aid-int3>3.0.co;2-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1004046887
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/int.21829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049499342
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/int.21869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052823507
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/int.21927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091225824
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/int.21961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100832373
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0165-0114(93)90194-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1011541460
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.eswa.2007.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025943535
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.fss.2014.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052121826
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.fss.2016.04.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034262670
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.fss.2017.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091322461
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ins.2008.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011932371
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ins.2013.08.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011153906
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ins.2014.07.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015821233
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.ins.2015.05.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046668933
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0165-0114(02)00432-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016324260
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1017/cbo9781139644150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098777020
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1080/00268970500067880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029784999
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1080/03081079008935110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051635291
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1080/03081079208945024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046760734
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/21.87068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061122429
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/3477.752789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061158315
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/3477.907562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061158488
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/tcyb.2016.2634599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061580506
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tfuzz.2008.917299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606173
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tfuzz.2009.2035812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606308
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/tfuzz.2015.2406888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606979
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tfuzz.2015.2450772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061607016
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/tfuzz.2016.2617371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061607234
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/tfuzz.2017.2654482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086111987
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/tfuzz.2017.2756828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091965255
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/tsmc.2014.2314724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061794193
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.10979.36 schema:alternateName Palacký University, Olomouc
183 schema:name Department Algebra and Geometry, Palacky University Olomouc, Faculty Science, 17 Listopadu 12, 77146, Olomouc, Czech Republic
184 Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 810 05, Bratislava, Slovakia
185 rdf:type schema:Organization
186 https://www.grid.ac/institutes/grid.260474.3 schema:alternateName Nanjing Normal University
187 schema:name Business School, Nanjing Normal University, Nanjing, China
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.419406.e schema:alternateName Iona College
190 schema:name Machine Intelligence Institute, Iona College, 10801, New Rochelle, NY, USA
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...