A visual analytics with evidential inference for big data: case study of chemical vapor deposition in solar company View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07-19

AUTHORS

Yu-Chien Ko, Yang-Yin Ting, Hamido Fujita

ABSTRACT

Facing the frontier challenges of big data, the alarm analysis of sensors becomes more significant in manufacturing industries. However, many relevant and irrelevant alarms from unpredictable occurrences, unlimited sensors, unknown values, undetermined causes, and uncertain relevance impose their information useless. This paper proposes a big data analytics to solve damage cause with alarms. It constructs granules to reduce data size and explores a baseline to make inference. For illustrating the analytical technique, a case study of chemical vapor deposition within a solar company is presented. Its results provide inferential knowledge for the cause of damage and low performance. The contribution of this paper lies in integrating interdisciplinary techniques and fulfilling analytics with evidential inference. More... »

PAGES

531-544

References to SciGraph publications

  • 2009. Rough Sets in Decision Making in ENCYCLOPEDIA OF COMPLEXITY AND SYSTEMS SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s41066-018-0116-3

    DOI

    http://dx.doi.org/10.1007/s41066-018-0116-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105710753


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Information Management, Chung Hua University, 30012, Hsinchu, Taiwan", 
              "id": "http://www.grid.ac/institutes/grid.411655.2", 
              "name": [
                "Department of Information Management, Chung Hua University, 30012, Hsinchu, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ko", 
            "givenName": "Yu-Chien", 
            "id": "sg:person.014632261051.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014632261051.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Information Management, Chung Hua University, 30012, Hsinchu, Taiwan", 
              "id": "http://www.grid.ac/institutes/grid.411655.2", 
              "name": [
                "Department of Information Management, Chung Hua University, 30012, Hsinchu, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ting", 
            "givenName": "Yang-Yin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Software and Information Science, Iwate Prefectural University, 020-0693, Takizawa, Japan", 
              "id": "http://www.grid.ac/institutes/grid.443998.b", 
              "name": [
                "Software and Information Science, Iwate Prefectural University, 020-0693, Takizawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fujita", 
            "givenName": "Hamido", 
            "id": "sg:person.013140150336.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140150336.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-0-387-30440-3_460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021898847", 
              "https://doi.org/10.1007/978-0-387-30440-3_460"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07-19", 
        "datePublishedReg": "2018-07-19", 
        "description": "Facing the frontier challenges of big data, the alarm analysis of sensors becomes more significant in manufacturing industries. However, many relevant and irrelevant alarms from unpredictable occurrences, unlimited sensors, unknown values, undetermined causes, and uncertain relevance impose their information useless. This paper proposes a big data analytics to solve damage cause with alarms. It constructs granules to reduce data size and explores a baseline to make inference. For illustrating the analytical technique, a case study of chemical vapor deposition within a solar company is presented. Its results provide inferential knowledge for the cause of damage and low performance. The contribution of this paper lies in integrating interdisciplinary techniques and fulfilling analytics with evidential inference.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s41066-018-0116-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1154931", 
            "issn": [
              "2364-4966", 
              "2364-4974"
            ], 
            "name": "Granular Computing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "keywords": [
          "chemical vapor deposition", 
          "vapor deposition", 
          "solar companies", 
          "cause of damage", 
          "damage causes", 
          "sensors", 
          "manufacturing industry", 
          "deposition", 
          "case study", 
          "frontier challenges", 
          "analytical techniques", 
          "lower performance", 
          "alarm analysis", 
          "technique", 
          "interdisciplinary techniques", 
          "industry", 
          "alarms", 
          "performance", 
          "unknown values", 
          "unpredictable occurrence", 
          "big data analytics", 
          "data analytics", 
          "size", 
          "big data", 
          "results", 
          "values", 
          "damage", 
          "challenges", 
          "data", 
          "analysis", 
          "granules", 
          "data size", 
          "study", 
          "companies", 
          "contribution", 
          "analytics", 
          "information", 
          "occurrence", 
          "knowledge", 
          "cause", 
          "inference", 
          "relevance", 
          "paper", 
          "visual analytics", 
          "uncertain relevance", 
          "baseline", 
          "irrelevant alarms", 
          "inferential knowledge", 
          "evidential inference", 
          "undetermined cause", 
          "unlimited sensors", 
          "fulfilling analytics"
        ], 
        "name": "A visual analytics with evidential inference for big data: case study of chemical vapor deposition in solar company", 
        "pagination": "531-544", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105710753"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s41066-018-0116-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s41066-018-0116-3", 
          "https://app.dimensions.ai/details/publication/pub.1105710753"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_781.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s41066-018-0116-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41066-018-0116-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41066-018-0116-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41066-018-0116-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41066-018-0116-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    130 TRIPLES      22 PREDICATES      78 URIs      69 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s41066-018-0116-3 schema:about anzsrc-for:09
    2 anzsrc-for:0906
    3 schema:author N1bed5872b7bb4720bc8ea9361741c883
    4 schema:citation sg:pub.10.1007/978-0-387-30440-3_460
    5 schema:datePublished 2018-07-19
    6 schema:datePublishedReg 2018-07-19
    7 schema:description Facing the frontier challenges of big data, the alarm analysis of sensors becomes more significant in manufacturing industries. However, many relevant and irrelevant alarms from unpredictable occurrences, unlimited sensors, unknown values, undetermined causes, and uncertain relevance impose their information useless. This paper proposes a big data analytics to solve damage cause with alarms. It constructs granules to reduce data size and explores a baseline to make inference. For illustrating the analytical technique, a case study of chemical vapor deposition within a solar company is presented. Its results provide inferential knowledge for the cause of damage and low performance. The contribution of this paper lies in integrating interdisciplinary techniques and fulfilling analytics with evidential inference.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N2dd33ee6cea345acb0db302e3652e77d
    12 Na440620562524eeda2ecd22f41d6f96c
    13 sg:journal.1154931
    14 schema:keywords alarm analysis
    15 alarms
    16 analysis
    17 analytical techniques
    18 analytics
    19 baseline
    20 big data
    21 big data analytics
    22 case study
    23 cause
    24 cause of damage
    25 challenges
    26 chemical vapor deposition
    27 companies
    28 contribution
    29 damage
    30 damage causes
    31 data
    32 data analytics
    33 data size
    34 deposition
    35 evidential inference
    36 frontier challenges
    37 fulfilling analytics
    38 granules
    39 industry
    40 inference
    41 inferential knowledge
    42 information
    43 interdisciplinary techniques
    44 irrelevant alarms
    45 knowledge
    46 lower performance
    47 manufacturing industry
    48 occurrence
    49 paper
    50 performance
    51 relevance
    52 results
    53 sensors
    54 size
    55 solar companies
    56 study
    57 technique
    58 uncertain relevance
    59 undetermined cause
    60 unknown values
    61 unlimited sensors
    62 unpredictable occurrence
    63 values
    64 vapor deposition
    65 visual analytics
    66 schema:name A visual analytics with evidential inference for big data: case study of chemical vapor deposition in solar company
    67 schema:pagination 531-544
    68 schema:productId N86b896e959234a6eb48d63b75faeadec
    69 Nd68d06dbdb8f42b5b62d85af1c36613a
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105710753
    71 https://doi.org/10.1007/s41066-018-0116-3
    72 schema:sdDatePublished 2021-11-01T18:33
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher Nbce16d95ce95434ca1d43ada10391aec
    75 schema:url https://doi.org/10.1007/s41066-018-0116-3
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N124168aaf10d4a6dbd709d8ee39ebb1c rdf:first N66618fb511f742da81b6ddb8949228a7
    80 rdf:rest Nf55294499f074148ac83376c5073bce1
    81 N1bed5872b7bb4720bc8ea9361741c883 rdf:first sg:person.014632261051.29
    82 rdf:rest N124168aaf10d4a6dbd709d8ee39ebb1c
    83 N2dd33ee6cea345acb0db302e3652e77d schema:volumeNumber 4
    84 rdf:type schema:PublicationVolume
    85 N66618fb511f742da81b6ddb8949228a7 schema:affiliation grid-institutes:grid.411655.2
    86 schema:familyName Ting
    87 schema:givenName Yang-Yin
    88 rdf:type schema:Person
    89 N86b896e959234a6eb48d63b75faeadec schema:name dimensions_id
    90 schema:value pub.1105710753
    91 rdf:type schema:PropertyValue
    92 Na440620562524eeda2ecd22f41d6f96c schema:issueNumber 3
    93 rdf:type schema:PublicationIssue
    94 Nbce16d95ce95434ca1d43ada10391aec schema:name Springer Nature - SN SciGraph project
    95 rdf:type schema:Organization
    96 Nd68d06dbdb8f42b5b62d85af1c36613a schema:name doi
    97 schema:value 10.1007/s41066-018-0116-3
    98 rdf:type schema:PropertyValue
    99 Nf55294499f074148ac83376c5073bce1 rdf:first sg:person.013140150336.19
    100 rdf:rest rdf:nil
    101 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Engineering
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Electrical and Electronic Engineering
    106 rdf:type schema:DefinedTerm
    107 sg:journal.1154931 schema:issn 2364-4966
    108 2364-4974
    109 schema:name Granular Computing
    110 schema:publisher Springer Nature
    111 rdf:type schema:Periodical
    112 sg:person.013140150336.19 schema:affiliation grid-institutes:grid.443998.b
    113 schema:familyName Fujita
    114 schema:givenName Hamido
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140150336.19
    116 rdf:type schema:Person
    117 sg:person.014632261051.29 schema:affiliation grid-institutes:grid.411655.2
    118 schema:familyName Ko
    119 schema:givenName Yu-Chien
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014632261051.29
    121 rdf:type schema:Person
    122 sg:pub.10.1007/978-0-387-30440-3_460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021898847
    123 https://doi.org/10.1007/978-0-387-30440-3_460
    124 rdf:type schema:CreativeWork
    125 grid-institutes:grid.411655.2 schema:alternateName Department of Information Management, Chung Hua University, 30012, Hsinchu, Taiwan
    126 schema:name Department of Information Management, Chung Hua University, 30012, Hsinchu, Taiwan
    127 rdf:type schema:Organization
    128 grid-institutes:grid.443998.b schema:alternateName Software and Information Science, Iwate Prefectural University, 020-0693, Takizawa, Japan
    129 schema:name Software and Information Science, Iwate Prefectural University, 020-0693, Takizawa, Japan
    130 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...