A visual analytics with evidential inference for big data: case study of chemical vapor deposition in solar company View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07-19

AUTHORS

Yu-Chien Ko, Yang-Yin Ting, Hamido Fujita

ABSTRACT

Facing the frontier challenges of big data, the alarm analysis of sensors becomes more significant in manufacturing industries. However, many relevant and irrelevant alarms from unpredictable occurrences, unlimited sensors, unknown values, undetermined causes, and uncertain relevance impose their information useless. This paper proposes a big data analytics to solve damage cause with alarms. It constructs granules to reduce data size and explores a baseline to make inference. For illustrating the analytical technique, a case study of chemical vapor deposition within a solar company is presented. Its results provide inferential knowledge for the cause of damage and low performance. The contribution of this paper lies in integrating interdisciplinary techniques and fulfilling analytics with evidential inference. More... »

PAGES

1-14

References to SciGraph publications

  • 2009. Rough Sets in Decision Making in ENCYCLOPEDIA OF COMPLEXITY AND SYSTEMS SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s41066-018-0116-3

    DOI

    http://dx.doi.org/10.1007/s41066-018-0116-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105710753


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Chung Hua University", 
              "id": "https://www.grid.ac/institutes/grid.411655.2", 
              "name": [
                "Department of Information Management, Chung Hua University, 30012, Hsinchu, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ko", 
            "givenName": "Yu-Chien", 
            "id": "sg:person.014632261051.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014632261051.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chung Hua University", 
              "id": "https://www.grid.ac/institutes/grid.411655.2", 
              "name": [
                "Department of Information Management, Chung Hua University, 30012, Hsinchu, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ting", 
            "givenName": "Yang-Yin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Iwate Prefectural University", 
              "id": "https://www.grid.ac/institutes/grid.443998.b", 
              "name": [
                "Software and Information Science, Iwate Prefectural University, 020-0693, Takizawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fujita", 
            "givenName": "Hamido", 
            "id": "sg:person.013140150336.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140150336.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ijpe.2015.02.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000142776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tsf.2005.12.119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000994910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijpe.2014.04.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003838747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2875427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005006105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0895-7177(89)90373-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006378135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2015.07.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010878549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0377-2217(96)00382-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013320046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2884781.2884783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015902110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2016.09.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017660051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijpe.2014.12.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018104486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2016.05.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018518702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2976744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019598722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.envsoft.2016.07.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021162579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2963143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021810237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-30440-3_460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021898847", 
              "https://doi.org/10.1007/978-0-387-30440-3_460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0377-2217(00)00167-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023708262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/int.10014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024375843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijpe.2014.12.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027456756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2015.08.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029920728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2500499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031814549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1317797110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035439471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0927-0248(01)00170-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035750157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcss.2014.02.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036571548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbusres.2016.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037185591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijpe.2014.12.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037261015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0470867167.ch36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039324434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-0114(00)00086-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040613500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procs.2015.07.392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049583490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbusres.2016.08.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049634808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbusres.2016.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052014562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2016.05.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053705515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcse.2011.73", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061398480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcse.2011.74", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061398481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1170411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062459912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1257/jep.28.2.3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064530722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077182097", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078635589", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procir.2017.03.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085858550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijdrr.2017.09.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091909031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijdrr.2017.09.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091909031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijar.2017.10.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092348407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ccece.1999.804943", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093478705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ictai.2014.115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093605701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ispse.2000.913236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093717479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/bigdata.2016.7841089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094368919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/bigdatacongress.2015.12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094974924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/fuzzy.1998.687467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095545667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/41703503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107655029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0470867167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109698647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109698647", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109698647", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07-19", 
        "datePublishedReg": "2018-07-19", 
        "description": "Facing the frontier challenges of big data, the alarm analysis of sensors becomes more significant in manufacturing industries. However, many relevant and irrelevant alarms from unpredictable occurrences, unlimited sensors, unknown values, undetermined causes, and uncertain relevance impose their information useless. This paper proposes a big data analytics to solve damage cause with alarms. It constructs granules to reduce data size and explores a baseline to make inference. For illustrating the analytical technique, a case study of chemical vapor deposition within a solar company is presented. Its results provide inferential knowledge for the cause of damage and low performance. The contribution of this paper lies in integrating interdisciplinary techniques and fulfilling analytics with evidential inference.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s41066-018-0116-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1154931", 
            "issn": [
              "2364-4966", 
              "2364-4974"
            ], 
            "name": "Granular Computing", 
            "type": "Periodical"
          }
        ], 
        "name": "A visual analytics with evidential inference for big data: case study of chemical vapor deposition in solar company", 
        "pagination": "1-14", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ce2077082b288a060f48572c6909a69868be45fee7b4d23224ba9060a68594bd"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s41066-018-0116-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105710753"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s41066-018-0116-3", 
          "https://app.dimensions.ai/details/publication/pub.1105710753"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113641_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs41066-018-0116-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41066-018-0116-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41066-018-0116-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41066-018-0116-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41066-018-0116-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    216 TRIPLES      21 PREDICATES      73 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s41066-018-0116-3 schema:about anzsrc-for:09
    2 anzsrc-for:0906
    3 schema:author N15387abd9d82420d80ba03355301d091
    4 schema:citation sg:pub.10.1007/978-0-387-30440-3_460
    5 https://app.dimensions.ai/details/publication/pub.1077182097
    6 https://app.dimensions.ai/details/publication/pub.1078635589
    7 https://app.dimensions.ai/details/publication/pub.1109698647
    8 https://doi.org/10.1002/0470867167
    9 https://doi.org/10.1002/0470867167.ch36
    10 https://doi.org/10.1002/int.10014
    11 https://doi.org/10.1016/0895-7177(89)90373-7
    12 https://doi.org/10.1016/j.asoc.2016.09.050
    13 https://doi.org/10.1016/j.envsoft.2016.07.017
    14 https://doi.org/10.1016/j.ijar.2017.10.015
    15 https://doi.org/10.1016/j.ijdrr.2017.09.037
    16 https://doi.org/10.1016/j.ijpe.2014.04.018
    17 https://doi.org/10.1016/j.ijpe.2014.12.032
    18 https://doi.org/10.1016/j.ijpe.2014.12.034
    19 https://doi.org/10.1016/j.ijpe.2014.12.036
    20 https://doi.org/10.1016/j.ijpe.2015.02.014
    21 https://doi.org/10.1016/j.jbusres.2016.08.001
    22 https://doi.org/10.1016/j.jbusres.2016.08.006
    23 https://doi.org/10.1016/j.jbusres.2016.08.007
    24 https://doi.org/10.1016/j.jcss.2014.02.007
    25 https://doi.org/10.1016/j.knosys.2015.07.010
    26 https://doi.org/10.1016/j.knosys.2015.08.007
    27 https://doi.org/10.1016/j.knosys.2016.05.043
    28 https://doi.org/10.1016/j.knosys.2016.05.056
    29 https://doi.org/10.1016/j.procir.2017.03.019
    30 https://doi.org/10.1016/j.procs.2015.07.392
    31 https://doi.org/10.1016/j.tsf.2005.12.119
    32 https://doi.org/10.1016/s0165-0114(00)00086-5
    33 https://doi.org/10.1016/s0377-2217(00)00167-3
    34 https://doi.org/10.1016/s0377-2217(96)00382-7
    35 https://doi.org/10.1016/s0927-0248(01)00170-2
    36 https://doi.org/10.1073/pnas.1317797110
    37 https://doi.org/10.1109/bigdata.2016.7841089
    38 https://doi.org/10.1109/bigdatacongress.2015.12
    39 https://doi.org/10.1109/ccece.1999.804943
    40 https://doi.org/10.1109/fuzzy.1998.687467
    41 https://doi.org/10.1109/ictai.2014.115
    42 https://doi.org/10.1109/ispse.2000.913236
    43 https://doi.org/10.1109/mcse.2011.73
    44 https://doi.org/10.1109/mcse.2011.74
    45 https://doi.org/10.1126/science.1170411
    46 https://doi.org/10.1145/2500499
    47 https://doi.org/10.1145/2875427
    48 https://doi.org/10.1145/2884781.2884783
    49 https://doi.org/10.1145/2963143
    50 https://doi.org/10.1145/2976744
    51 https://doi.org/10.1257/jep.28.2.3
    52 https://doi.org/10.2307/41703503
    53 schema:datePublished 2018-07-19
    54 schema:datePublishedReg 2018-07-19
    55 schema:description Facing the frontier challenges of big data, the alarm analysis of sensors becomes more significant in manufacturing industries. However, many relevant and irrelevant alarms from unpredictable occurrences, unlimited sensors, unknown values, undetermined causes, and uncertain relevance impose their information useless. This paper proposes a big data analytics to solve damage cause with alarms. It constructs granules to reduce data size and explores a baseline to make inference. For illustrating the analytical technique, a case study of chemical vapor deposition within a solar company is presented. Its results provide inferential knowledge for the cause of damage and low performance. The contribution of this paper lies in integrating interdisciplinary techniques and fulfilling analytics with evidential inference.
    56 schema:genre research_article
    57 schema:inLanguage en
    58 schema:isAccessibleForFree false
    59 schema:isPartOf sg:journal.1154931
    60 schema:name A visual analytics with evidential inference for big data: case study of chemical vapor deposition in solar company
    61 schema:pagination 1-14
    62 schema:productId N4fc0b233f99a43c9822bf528b94bd174
    63 N672ebceddddc47bfae4f84bfa0886de3
    64 Nf418a2b51f5c40908f074fa6f204c327
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105710753
    66 https://doi.org/10.1007/s41066-018-0116-3
    67 schema:sdDatePublished 2019-04-11T10:29
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher N79e66cadca984acd93987969f8703028
    70 schema:url https://link.springer.com/10.1007%2Fs41066-018-0116-3
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N15387abd9d82420d80ba03355301d091 rdf:first sg:person.014632261051.29
    75 rdf:rest N56d6899a04764b2fbc14d0f4964a0910
    76 N4fc0b233f99a43c9822bf528b94bd174 schema:name dimensions_id
    77 schema:value pub.1105710753
    78 rdf:type schema:PropertyValue
    79 N56d6899a04764b2fbc14d0f4964a0910 rdf:first N731f1ae7139b4de79718f2a46d6046f0
    80 rdf:rest N925eb1ea5e7b46939471f2ae95bd4ffc
    81 N672ebceddddc47bfae4f84bfa0886de3 schema:name doi
    82 schema:value 10.1007/s41066-018-0116-3
    83 rdf:type schema:PropertyValue
    84 N731f1ae7139b4de79718f2a46d6046f0 schema:affiliation https://www.grid.ac/institutes/grid.411655.2
    85 schema:familyName Ting
    86 schema:givenName Yang-Yin
    87 rdf:type schema:Person
    88 N79e66cadca984acd93987969f8703028 schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 N925eb1ea5e7b46939471f2ae95bd4ffc rdf:first sg:person.013140150336.19
    91 rdf:rest rdf:nil
    92 Nf418a2b51f5c40908f074fa6f204c327 schema:name readcube_id
    93 schema:value ce2077082b288a060f48572c6909a69868be45fee7b4d23224ba9060a68594bd
    94 rdf:type schema:PropertyValue
    95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Engineering
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Electrical and Electronic Engineering
    100 rdf:type schema:DefinedTerm
    101 sg:journal.1154931 schema:issn 2364-4966
    102 2364-4974
    103 schema:name Granular Computing
    104 rdf:type schema:Periodical
    105 sg:person.013140150336.19 schema:affiliation https://www.grid.ac/institutes/grid.443998.b
    106 schema:familyName Fujita
    107 schema:givenName Hamido
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140150336.19
    109 rdf:type schema:Person
    110 sg:person.014632261051.29 schema:affiliation https://www.grid.ac/institutes/grid.411655.2
    111 schema:familyName Ko
    112 schema:givenName Yu-Chien
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014632261051.29
    114 rdf:type schema:Person
    115 sg:pub.10.1007/978-0-387-30440-3_460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021898847
    116 https://doi.org/10.1007/978-0-387-30440-3_460
    117 rdf:type schema:CreativeWork
    118 https://app.dimensions.ai/details/publication/pub.1077182097 schema:CreativeWork
    119 https://app.dimensions.ai/details/publication/pub.1078635589 schema:CreativeWork
    120 https://app.dimensions.ai/details/publication/pub.1109698647 schema:CreativeWork
    121 https://doi.org/10.1002/0470867167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109698647
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1002/0470867167.ch36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039324434
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1002/int.10014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024375843
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/0895-7177(89)90373-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006378135
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.asoc.2016.09.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017660051
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.envsoft.2016.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021162579
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.ijar.2017.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092348407
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.ijdrr.2017.09.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091909031
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.ijpe.2014.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003838747
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.ijpe.2014.12.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018104486
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.ijpe.2014.12.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037261015
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.ijpe.2014.12.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027456756
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.ijpe.2015.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000142776
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.jbusres.2016.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037185591
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.jbusres.2016.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052014562
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.jbusres.2016.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049634808
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.jcss.2014.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036571548
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/j.knosys.2015.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010878549
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.knosys.2015.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029920728
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.knosys.2016.05.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018518702
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/j.knosys.2016.05.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053705515
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.procir.2017.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085858550
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.procs.2015.07.392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583490
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.tsf.2005.12.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000994910
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/s0165-0114(00)00086-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040613500
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/s0377-2217(00)00167-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023708262
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/s0377-2217(96)00382-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013320046
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/s0927-0248(01)00170-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035750157
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1073/pnas.1317797110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035439471
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1109/bigdata.2016.7841089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094368919
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1109/bigdatacongress.2015.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094974924
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1109/ccece.1999.804943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093478705
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1109/fuzzy.1998.687467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095545667
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1109/ictai.2014.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093605701
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1109/ispse.2000.913236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093717479
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1109/mcse.2011.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398480
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1109/mcse.2011.74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398481
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1126/science.1170411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459912
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1145/2500499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031814549
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1145/2875427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005006105
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1145/2884781.2884783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015902110
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1145/2963143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021810237
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1145/2976744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019598722
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1257/jep.28.2.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064530722
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.2307/41703503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107655029
    210 rdf:type schema:CreativeWork
    211 https://www.grid.ac/institutes/grid.411655.2 schema:alternateName Chung Hua University
    212 schema:name Department of Information Management, Chung Hua University, 30012, Hsinchu, Taiwan
    213 rdf:type schema:Organization
    214 https://www.grid.ac/institutes/grid.443998.b schema:alternateName Iwate Prefectural University
    215 schema:name Software and Information Science, Iwate Prefectural University, 020-0693, Takizawa, Japan
    216 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...