Recent Ice Trends in Swiss Mountain Lakes: 20-year Analysis of MODIS Imagery View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-08-18

AUTHORS

Manu Tom, Tianyu Wu, Emmanuel Baltsavias, Konrad Schindler

ABSTRACT

Depleting lake ice is a climate change indicator, just like sea-level rise or glacial retreat. Monitoring Lake Ice Phenology (LIP) is useful because long-term freezing and thawing patterns serve as sentinels to understand regional and global climate change. We report a study for the Oberengadin region of Switzerland, where several small- and medium-sized mountain lakes are located. We observe the LIP events, such as freeze-up, break-up and ice cover duration, across two decades (2000–2020) from optical satellite images. We analyse the time series of MODIS imagery by estimating spatially resolved maps of lake ice for these Alpine lakes with supervised machine learning. To train the classifier we rely on reference data annotated manually based on webcam images. From the ice maps, we derive long-term LIP trends. Since the webcam data are only available for two winters, we cross-check our results against the operational MODIS and VIIRS snow products. We find a change in complete freeze duration of -0.76\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,0.76$$\end{document} and -0.89\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,0.89$$\end{document} days per annum for lakes Sils and Silvaplana, respectively. Furthermore, we observe plausible correlations of the LIP trends with climate data measured at nearby meteorological stations. We notice that mean winter air temperature has a negative correlation with the freeze duration and break-up events and a positive correlation with the freeze-up events. Additionally, we observe a strong negative correlation of sunshine during the winter months with the freeze duration and break-up events. More... »

PAGES

413-431

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41064-022-00215-x

DOI

http://dx.doi.org/10.1007/s41064-022-00215-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150326324


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Remote Sensing Group, Swiss Federal Institute of Aquatic Science and Technology, 8600, D\u00fcbendorf, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.418656.8", 
          "name": [
            "Photogrammetry and Remote Sensing Group, ETH Zurich, 8093, Zurich, Switzerland", 
            "Glaciology and Geomorphodynamics Group, University of Zurich, 8057, Zurich, Switzerland", 
            "Remote Sensing Group, Swiss Federal Institute of Aquatic Science and Technology, 8600, D\u00fcbendorf, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tom", 
        "givenName": "Manu", 
        "id": "sg:person.010220727252.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010220727252.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Photogrammetry and Remote Sensing Group, ETH Zurich, 8093, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Photogrammetry and Remote Sensing Group, ETH Zurich, 8093, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Tianyu", 
        "id": "sg:person.015352065115.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352065115.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Photogrammetry and Remote Sensing Group, ETH Zurich, 8093, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Photogrammetry and Remote Sensing Group, ETH Zurich, 8093, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baltsavias", 
        "givenName": "Emmanuel", 
        "id": "sg:person.012641740325.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012641740325.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Photogrammetry and Remote Sensing Group, ETH Zurich, 8093, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Photogrammetry and Remote Sensing Group, ETH Zurich, 8093, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schindler", 
        "givenName": "Konrad", 
        "id": "sg:person.01274572717.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274572717.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-030-01234-2_49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107454614", 
          "https://doi.org/10.1007/978-3-030-01234-2_49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41558-018-0393-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111674468", 
          "https://doi.org/10.1038/s41558-018-0393-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11442-019-1587-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111223410", 
          "https://doi.org/10.1007/s11442-019-1587-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41561-018-0114-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103690350", 
          "https://doi.org/10.1038/s41561-018-0114-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00865152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041453492", 
          "https://doi.org/10.1007/bf00865152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-019-02623-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123089811", 
          "https://doi.org/10.1007/s10584-019-02623-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11442-016-1255-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040673703", 
          "https://doi.org/10.1007/s11442-016-1255-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep38449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005609682", 
          "https://doi.org/10.1038/srep38449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-016-1830-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051448963", 
          "https://doi.org/10.1007/s00704-016-1830-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-08-18", 
    "datePublishedReg": "2022-08-18", 
    "description": "Depleting lake ice is a climate change indicator, just like sea-level rise or glacial retreat. Monitoring Lake Ice Phenology (LIP) is useful because long-term freezing and thawing patterns serve as sentinels to understand regional and global climate change. We report a study for the Oberengadin region of Switzerland, where several small- and medium-sized mountain lakes are located. We observe the LIP events, such as freeze-up, break-up and ice cover duration, across two decades (2000\u20132020) from optical satellite images. We analyse the time series of MODIS imagery by estimating spatially resolved maps of lake ice for these Alpine lakes with supervised machine learning. To train the classifier we rely on reference data annotated manually based on webcam images. From the ice maps, we derive long-term LIP trends. Since the webcam data are only available for two winters, we cross-check our results against the operational MODIS and VIIRS snow products. We find a change in complete freeze duration of -0.76\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$-\\,0.76$$\\end{document} and -0.89\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$-\\,0.89$$\\end{document} days per annum for lakes Sils and Silvaplana, respectively. Furthermore, we observe plausible correlations of the LIP trends with climate data measured at nearby meteorological stations. We notice that mean winter air temperature has a negative correlation with the freeze duration and break-up events and a positive correlation with the freeze-up events. Additionally, we observe a strong negative correlation of sunshine during the winter months with the freeze duration and break-up events.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s41064-022-00215-x", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1320463", 
        "issn": [
          "2512-2789", 
          "2512-2819"
        ], 
        "name": "PFG \u2013 Journal of Photogrammetry, Remote Sensing and Geoinformation Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "90"
      }
    ], 
    "keywords": [
      "lake ice phenology", 
      "lake ice", 
      "mountain lakes", 
      "MODIS imagery", 
      "sea level rise", 
      "ice cover duration", 
      "winter air temperature", 
      "nearby meteorological station", 
      "freeze duration", 
      "Swiss mountain lake", 
      "climate change indicators", 
      "global climate change", 
      "LIP events", 
      "ice phenology", 
      "glacial retreat", 
      "cover duration", 
      "meteorological stations", 
      "alpine lakes", 
      "snow products", 
      "climate data", 
      "ice maps", 
      "climate change", 
      "air temperature", 
      "optical satellite images", 
      "winter months", 
      "satellite images", 
      "lakes", 
      "change indicators", 
      "time series", 
      "ice", 
      "strong negative correlation", 
      "negative correlation", 
      "events", 
      "webcam images", 
      "imagery", 
      "plausible correlation", 
      "retreat", 
      "trends", 
      "MODIS", 
      "winter", 
      "maps", 
      "reference data", 
      "stations", 
      "positive correlation", 
      "long-term freezing", 
      "data", 
      "correlation", 
      "changes", 
      "phenology", 
      "breaks", 
      "region", 
      "freeze", 
      "Switzerland", 
      "sunshine", 
      "freezing", 
      "rise", 
      "temperature", 
      "patterns", 
      "sentinels", 
      "SIL", 
      "decades", 
      "indicators", 
      "duration", 
      "series", 
      "annum", 
      "images", 
      "analysis", 
      "results", 
      "study", 
      "days", 
      "products", 
      "months", 
      "machine learning", 
      "supervised machine learning", 
      "classifier", 
      "webcam data", 
      "learning"
    ], 
    "name": "Recent Ice Trends in Swiss Mountain Lakes: 20-year Analysis of MODIS Imagery", 
    "pagination": "413-431", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150326324"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41064-022-00215-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41064-022-00215-x", 
      "https://app.dimensions.ai/details/publication/pub.1150326324"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_944.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s41064-022-00215-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41064-022-00215-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41064-022-00215-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41064-022-00215-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41064-022-00215-x'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      111 URIs      93 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41064-022-00215-x schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N2e6667aaaaf14f6780af5cb688404701
4 schema:citation sg:pub.10.1007/978-3-030-01234-2_49
5 sg:pub.10.1007/bf00865152
6 sg:pub.10.1007/bf00994018
7 sg:pub.10.1007/s00704-016-1830-x
8 sg:pub.10.1007/s10584-019-02623-2
9 sg:pub.10.1007/s11442-016-1255-6
10 sg:pub.10.1007/s11442-019-1587-0
11 sg:pub.10.1038/s41558-018-0393-5
12 sg:pub.10.1038/s41561-018-0114-8
13 sg:pub.10.1038/srep38449
14 schema:datePublished 2022-08-18
15 schema:datePublishedReg 2022-08-18
16 schema:description Depleting lake ice is a climate change indicator, just like sea-level rise or glacial retreat. Monitoring Lake Ice Phenology (LIP) is useful because long-term freezing and thawing patterns serve as sentinels to understand regional and global climate change. We report a study for the Oberengadin region of Switzerland, where several small- and medium-sized mountain lakes are located. We observe the LIP events, such as freeze-up, break-up and ice cover duration, across two decades (2000–2020) from optical satellite images. We analyse the time series of MODIS imagery by estimating spatially resolved maps of lake ice for these Alpine lakes with supervised machine learning. To train the classifier we rely on reference data annotated manually based on webcam images. From the ice maps, we derive long-term LIP trends. Since the webcam data are only available for two winters, we cross-check our results against the operational MODIS and VIIRS snow products. We find a change in complete freeze duration of -0.76\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,0.76$$\end{document} and -0.89\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,0.89$$\end{document} days per annum for lakes Sils and Silvaplana, respectively. Furthermore, we observe plausible correlations of the LIP trends with climate data measured at nearby meteorological stations. We notice that mean winter air temperature has a negative correlation with the freeze duration and break-up events and a positive correlation with the freeze-up events. Additionally, we observe a strong negative correlation of sunshine during the winter months with the freeze duration and break-up events.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf N1233b21e32aa46688259bd88ae416d40
20 Nf7d3257de66842c280d90c0709d7d6e4
21 sg:journal.1320463
22 schema:keywords LIP events
23 MODIS
24 MODIS imagery
25 SIL
26 Swiss mountain lake
27 Switzerland
28 air temperature
29 alpine lakes
30 analysis
31 annum
32 breaks
33 change indicators
34 changes
35 classifier
36 climate change
37 climate change indicators
38 climate data
39 correlation
40 cover duration
41 data
42 days
43 decades
44 duration
45 events
46 freeze
47 freeze duration
48 freezing
49 glacial retreat
50 global climate change
51 ice
52 ice cover duration
53 ice maps
54 ice phenology
55 imagery
56 images
57 indicators
58 lake ice
59 lake ice phenology
60 lakes
61 learning
62 long-term freezing
63 machine learning
64 maps
65 meteorological stations
66 months
67 mountain lakes
68 nearby meteorological station
69 negative correlation
70 optical satellite images
71 patterns
72 phenology
73 plausible correlation
74 positive correlation
75 products
76 reference data
77 region
78 results
79 retreat
80 rise
81 satellite images
82 sea level rise
83 sentinels
84 series
85 snow products
86 stations
87 strong negative correlation
88 study
89 sunshine
90 supervised machine learning
91 temperature
92 time series
93 trends
94 webcam data
95 webcam images
96 winter
97 winter air temperature
98 winter months
99 schema:name Recent Ice Trends in Swiss Mountain Lakes: 20-year Analysis of MODIS Imagery
100 schema:pagination 413-431
101 schema:productId N25f6733d92fd46fa82234807adaa3ebc
102 N2e86a632c7d74a96a8797ed394c286d5
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150326324
104 https://doi.org/10.1007/s41064-022-00215-x
105 schema:sdDatePublished 2022-12-01T06:44
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher Nce910c68a0734d0ba5900cd4304fff1f
108 schema:url https://doi.org/10.1007/s41064-022-00215-x
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N1233b21e32aa46688259bd88ae416d40 schema:volumeNumber 90
113 rdf:type schema:PublicationVolume
114 N23173529b568406bb4d00931c6943f1e rdf:first sg:person.015352065115.71
115 rdf:rest N76ac148897f34a4e8c2db5e5ec74f5f8
116 N25f6733d92fd46fa82234807adaa3ebc schema:name doi
117 schema:value 10.1007/s41064-022-00215-x
118 rdf:type schema:PropertyValue
119 N2e6667aaaaf14f6780af5cb688404701 rdf:first sg:person.010220727252.05
120 rdf:rest N23173529b568406bb4d00931c6943f1e
121 N2e86a632c7d74a96a8797ed394c286d5 schema:name dimensions_id
122 schema:value pub.1150326324
123 rdf:type schema:PropertyValue
124 N55406a14c57c4a3ba251c41bbebc7889 rdf:first sg:person.01274572717.34
125 rdf:rest rdf:nil
126 N76ac148897f34a4e8c2db5e5ec74f5f8 rdf:first sg:person.012641740325.55
127 rdf:rest N55406a14c57c4a3ba251c41bbebc7889
128 Nce910c68a0734d0ba5900cd4304fff1f schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 Nf7d3257de66842c280d90c0709d7d6e4 schema:issueNumber 4
131 rdf:type schema:PublicationIssue
132 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
133 schema:name Engineering
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
136 schema:name Geomatic Engineering
137 rdf:type schema:DefinedTerm
138 sg:journal.1320463 schema:issn 2512-2789
139 2512-2819
140 schema:name PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science
141 schema:publisher Springer Nature
142 rdf:type schema:Periodical
143 sg:person.010220727252.05 schema:affiliation grid-institutes:grid.418656.8
144 schema:familyName Tom
145 schema:givenName Manu
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010220727252.05
147 rdf:type schema:Person
148 sg:person.012641740325.55 schema:affiliation grid-institutes:grid.5801.c
149 schema:familyName Baltsavias
150 schema:givenName Emmanuel
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012641740325.55
152 rdf:type schema:Person
153 sg:person.01274572717.34 schema:affiliation grid-institutes:grid.5801.c
154 schema:familyName Schindler
155 schema:givenName Konrad
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274572717.34
157 rdf:type schema:Person
158 sg:person.015352065115.71 schema:affiliation grid-institutes:grid.5801.c
159 schema:familyName Wu
160 schema:givenName Tianyu
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352065115.71
162 rdf:type schema:Person
163 sg:pub.10.1007/978-3-030-01234-2_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107454614
164 https://doi.org/10.1007/978-3-030-01234-2_49
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/bf00865152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041453492
167 https://doi.org/10.1007/bf00865152
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
170 https://doi.org/10.1007/bf00994018
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s00704-016-1830-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051448963
173 https://doi.org/10.1007/s00704-016-1830-x
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s10584-019-02623-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123089811
176 https://doi.org/10.1007/s10584-019-02623-2
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s11442-016-1255-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040673703
179 https://doi.org/10.1007/s11442-016-1255-6
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s11442-019-1587-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111223410
182 https://doi.org/10.1007/s11442-019-1587-0
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/s41558-018-0393-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111674468
185 https://doi.org/10.1038/s41558-018-0393-5
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/s41561-018-0114-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103690350
188 https://doi.org/10.1038/s41561-018-0114-8
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/srep38449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005609682
191 https://doi.org/10.1038/srep38449
192 rdf:type schema:CreativeWork
193 grid-institutes:grid.418656.8 schema:alternateName Remote Sensing Group, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
194 schema:name Glaciology and Geomorphodynamics Group, University of Zurich, 8057, Zurich, Switzerland
195 Photogrammetry and Remote Sensing Group, ETH Zurich, 8093, Zurich, Switzerland
196 Remote Sensing Group, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
197 rdf:type schema:Organization
198 grid-institutes:grid.5801.c schema:alternateName Photogrammetry and Remote Sensing Group, ETH Zurich, 8093, Zurich, Switzerland
199 schema:name Photogrammetry and Remote Sensing Group, ETH Zurich, 8093, Zurich, Switzerland
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...