An Efficient Solution to Ray Tracing Problems in Multimedia Photogrammetry for Flat Refractive Interfaces View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-03-02

AUTHORS

Robin Rofallski, Thomas Luhmann

ABSTRACT

Understanding and considering refraction effects are important parts of the demanding task of multimedia photogrammetry, especially with planar interfaces, so-called ”flat ports”. Yet, it remains challenging to determine reliable calibration results that are both quickly acquired and physically interpretable. In this contribution, a novel object-based optimization algorithm, relying on ray tracing methods, is introduced. It enables calibrating physical parameters of all involved refractive properties with reduced computational effort, compared to other standard algorithms in ray tracing. We show that this solution produces equally accurate results as other ray tracing approaches while improving processing speed by a factor of approximately ten and providing a statistical metric in object space. Furthermore, we show in a laboratory investigation that explicit calibration of refractive properties is crucial even with orthogonally aligned bundle-invariant interfaces for highest accuracy, as accuracy in object space is decreased by about 10% with implicit calibration. With deviation from orthogonality by about ten degrees this decreases even further to almost no useful results and accuracy loss of more than 50% compared to explicit calibration results. More... »

PAGES

37-54

References to SciGraph publications

  • 2012. Perspective and Non-perspective Camera Models in Underwater Imaging – Overview and Error Analysis in OUTDOOR AND LARGE-SCALE REAL-WORLD SCENE ANALYSIS
  • 2019-10-25. Adjustment and Calibration of Dome Port Camera Systems for Underwater Vision in PATTERN RECOGNITION
  • 2019-03-07. Camera Calibration Techniques for Accurate Measurement Underwater in 3D RECORDING AND INTERPRETATION FOR MARITIME ARCHAEOLOGY
  • 2000. Underwater Camera Calibration in COMPUTER VISION — ECCV 2000
  • 2003-03. Dry camera calibration for underwater applications in MACHINE VISION AND APPLICATIONS
  • 2009. Recent Developments in 3D-PTV and Tomo-PIV in IMAGING MEASUREMENT METHODS FOR FLOW ANALYSIS
  • 2012. Refractive Calibration of Underwater Cameras in COMPUTER VISION – ECCV 2012
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s41064-022-00192-1

    DOI

    http://dx.doi.org/10.1007/s41064-022-00192-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1145982514


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Jade University of Applied Sciences, Institute for Applied Photogrammetry and Geoinformatics, Ofener Str. 16/19, 26121, Oldenburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.449343.d", 
              "name": [
                "Jade University of Applied Sciences, Institute for Applied Photogrammetry and Geoinformatics, Ofener Str. 16/19, 26121, Oldenburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rofallski", 
            "givenName": "Robin", 
            "id": "sg:person.013000026670.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013000026670.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jade University of Applied Sciences, Institute for Applied Photogrammetry and Geoinformatics, Ofener Str. 16/19, 26121, Oldenburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.449343.d", 
              "name": [
                "Jade University of Applied Sciences, Institute for Applied Photogrammetry and Geoinformatics, Ofener Str. 16/19, 26121, Oldenburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Luhmann", 
            "givenName": "Thomas", 
            "id": "sg:person.013100301575.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013100301575.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-34091-8_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007482958", 
              "https://doi.org/10.1007/978-3-642-34091-8_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45053-x_42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018932029", 
              "https://doi.org/10.1007/3-540-45053-x_42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-03635-5_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112586818", 
              "https://doi.org/10.1007/978-3-030-03635-5_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00138-002-0112-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023751403", 
              "https://doi.org/10.1007/s00138-002-0112-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-33676-9_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122090658", 
              "https://doi.org/10.1007/978-3-030-33676-9_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-33715-4_61", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014004696", 
              "https://doi.org/10.1007/978-3-642-33715-4_61"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-01106-1_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052139437", 
              "https://doi.org/10.1007/978-3-642-01106-1_6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-03-02", 
        "datePublishedReg": "2022-03-02", 
        "description": "Understanding and considering refraction effects are important parts of the demanding task of multimedia photogrammetry, especially with planar interfaces, so-called \u201dflat ports\u201d. Yet, it remains challenging to determine reliable calibration results that are both quickly acquired and physically interpretable. In this contribution, a novel object-based optimization algorithm, relying on ray tracing methods, is introduced. It enables calibrating physical parameters of all involved refractive properties with reduced computational effort, compared to other standard algorithms in ray tracing. We show that this solution produces equally accurate results as other ray tracing approaches while improving processing speed by a factor of approximately ten and providing a statistical metric in object space. Furthermore, we show in a laboratory investigation that explicit calibration of refractive properties is crucial even with orthogonally aligned bundle-invariant interfaces for highest accuracy, as accuracy in object space is decreased by about 10% with implicit calibration. With deviation from orthogonality by about ten degrees this decreases even further to almost no useful results and accuracy loss of more than 50% compared to explicit calibration results.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s41064-022-00192-1", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1320463", 
            "issn": [
              "2512-2789", 
              "2512-2819"
            ], 
            "name": "PFG \u2013 Journal of Photogrammetry, Remote Sensing and Geoinformation Science", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "90"
          }
        ], 
        "keywords": [
          "object space", 
          "computational effort", 
          "optimization algorithm", 
          "physical parameters", 
          "statistical metrics", 
          "multimedia photogrammetry", 
          "efficient solution", 
          "standard algorithms", 
          "tracing problem", 
          "accurate results", 
          "refraction effects", 
          "accuracy loss", 
          "reliable calibration results", 
          "useful results", 
          "implicit calibration", 
          "refractive properties", 
          "flat ports", 
          "Flat Refractive Interfaces", 
          "explicit calibration", 
          "high accuracy", 
          "algorithm", 
          "space", 
          "planar interface", 
          "rays", 
          "solution", 
          "calibration results", 
          "accuracy", 
          "orthogonality", 
          "refractive interface", 
          "properties", 
          "problem", 
          "parameters", 
          "processing speed", 
          "calibration", 
          "metrics", 
          "results", 
          "speed", 
          "photogrammetry", 
          "approach", 
          "deviation", 
          "interface", 
          "important part", 
          "task", 
          "contribution", 
          "ports", 
          "degree", 
          "part", 
          "investigation", 
          "effect", 
          "efforts", 
          "method", 
          "loss", 
          "factors", 
          "laboratory investigations"
        ], 
        "name": "An Efficient Solution to Ray Tracing Problems in Multimedia Photogrammetry for Flat Refractive Interfaces", 
        "pagination": "37-54", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1145982514"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s41064-022-00192-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s41064-022-00192-1", 
          "https://app.dimensions.ai/details/publication/pub.1145982514"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_938.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s41064-022-00192-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41064-022-00192-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41064-022-00192-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41064-022-00192-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41064-022-00192-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    146 TRIPLES      21 PREDICATES      85 URIs      70 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s41064-022-00192-1 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N171c1b12c6034f65a6a882b037fd5b90
    4 schema:citation sg:pub.10.1007/3-540-45053-x_42
    5 sg:pub.10.1007/978-3-030-03635-5_2
    6 sg:pub.10.1007/978-3-030-33676-9_6
    7 sg:pub.10.1007/978-3-642-01106-1_6
    8 sg:pub.10.1007/978-3-642-33715-4_61
    9 sg:pub.10.1007/978-3-642-34091-8_10
    10 sg:pub.10.1007/s00138-002-0112-z
    11 schema:datePublished 2022-03-02
    12 schema:datePublishedReg 2022-03-02
    13 schema:description Understanding and considering refraction effects are important parts of the demanding task of multimedia photogrammetry, especially with planar interfaces, so-called ”flat ports”. Yet, it remains challenging to determine reliable calibration results that are both quickly acquired and physically interpretable. In this contribution, a novel object-based optimization algorithm, relying on ray tracing methods, is introduced. It enables calibrating physical parameters of all involved refractive properties with reduced computational effort, compared to other standard algorithms in ray tracing. We show that this solution produces equally accurate results as other ray tracing approaches while improving processing speed by a factor of approximately ten and providing a statistical metric in object space. Furthermore, we show in a laboratory investigation that explicit calibration of refractive properties is crucial even with orthogonally aligned bundle-invariant interfaces for highest accuracy, as accuracy in object space is decreased by about 10% with implicit calibration. With deviation from orthogonality by about ten degrees this decreases even further to almost no useful results and accuracy loss of more than 50% compared to explicit calibration results.
    14 schema:genre article
    15 schema:isAccessibleForFree true
    16 schema:isPartOf N2ea73ef800124a8fa99092b7243b3f85
    17 N3c80217111464aa4b1cb7dddd97323d2
    18 sg:journal.1320463
    19 schema:keywords Flat Refractive Interfaces
    20 accuracy
    21 accuracy loss
    22 accurate results
    23 algorithm
    24 approach
    25 calibration
    26 calibration results
    27 computational effort
    28 contribution
    29 degree
    30 deviation
    31 effect
    32 efficient solution
    33 efforts
    34 explicit calibration
    35 factors
    36 flat ports
    37 high accuracy
    38 implicit calibration
    39 important part
    40 interface
    41 investigation
    42 laboratory investigations
    43 loss
    44 method
    45 metrics
    46 multimedia photogrammetry
    47 object space
    48 optimization algorithm
    49 orthogonality
    50 parameters
    51 part
    52 photogrammetry
    53 physical parameters
    54 planar interface
    55 ports
    56 problem
    57 processing speed
    58 properties
    59 rays
    60 refraction effects
    61 refractive interface
    62 refractive properties
    63 reliable calibration results
    64 results
    65 solution
    66 space
    67 speed
    68 standard algorithms
    69 statistical metrics
    70 task
    71 tracing problem
    72 useful results
    73 schema:name An Efficient Solution to Ray Tracing Problems in Multimedia Photogrammetry for Flat Refractive Interfaces
    74 schema:pagination 37-54
    75 schema:productId Nad98c309797a4de295d82271924c2c4b
    76 Nf4290d1cd9c44e8aa1355ba64fbfbc33
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145982514
    78 https://doi.org/10.1007/s41064-022-00192-1
    79 schema:sdDatePublished 2022-12-01T06:44
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N00a57b8017544e99b8d268c872be33f2
    82 schema:url https://doi.org/10.1007/s41064-022-00192-1
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N00a57b8017544e99b8d268c872be33f2 schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 N171c1b12c6034f65a6a882b037fd5b90 rdf:first sg:person.013000026670.90
    89 rdf:rest Nbcb7317b322842c48e4e62f0180ce170
    90 N2ea73ef800124a8fa99092b7243b3f85 schema:issueNumber 1
    91 rdf:type schema:PublicationIssue
    92 N3c80217111464aa4b1cb7dddd97323d2 schema:volumeNumber 90
    93 rdf:type schema:PublicationVolume
    94 Nad98c309797a4de295d82271924c2c4b schema:name doi
    95 schema:value 10.1007/s41064-022-00192-1
    96 rdf:type schema:PropertyValue
    97 Nbcb7317b322842c48e4e62f0180ce170 rdf:first sg:person.013100301575.67
    98 rdf:rest rdf:nil
    99 Nf4290d1cd9c44e8aa1355ba64fbfbc33 schema:name dimensions_id
    100 schema:value pub.1145982514
    101 rdf:type schema:PropertyValue
    102 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Information and Computing Sciences
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Artificial Intelligence and Image Processing
    107 rdf:type schema:DefinedTerm
    108 sg:journal.1320463 schema:issn 2512-2789
    109 2512-2819
    110 schema:name PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science
    111 schema:publisher Springer Nature
    112 rdf:type schema:Periodical
    113 sg:person.013000026670.90 schema:affiliation grid-institutes:grid.449343.d
    114 schema:familyName Rofallski
    115 schema:givenName Robin
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013000026670.90
    117 rdf:type schema:Person
    118 sg:person.013100301575.67 schema:affiliation grid-institutes:grid.449343.d
    119 schema:familyName Luhmann
    120 schema:givenName Thomas
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013100301575.67
    122 rdf:type schema:Person
    123 sg:pub.10.1007/3-540-45053-x_42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018932029
    124 https://doi.org/10.1007/3-540-45053-x_42
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/978-3-030-03635-5_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112586818
    127 https://doi.org/10.1007/978-3-030-03635-5_2
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/978-3-030-33676-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122090658
    130 https://doi.org/10.1007/978-3-030-33676-9_6
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/978-3-642-01106-1_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052139437
    133 https://doi.org/10.1007/978-3-642-01106-1_6
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/978-3-642-33715-4_61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014004696
    136 https://doi.org/10.1007/978-3-642-33715-4_61
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/978-3-642-34091-8_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007482958
    139 https://doi.org/10.1007/978-3-642-34091-8_10
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s00138-002-0112-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023751403
    142 https://doi.org/10.1007/s00138-002-0112-z
    143 rdf:type schema:CreativeWork
    144 grid-institutes:grid.449343.d schema:alternateName Jade University of Applied Sciences, Institute for Applied Photogrammetry and Geoinformatics, Ofener Str. 16/19, 26121, Oldenburg, Germany
    145 schema:name Jade University of Applied Sciences, Institute for Applied Photogrammetry and Geoinformatics, Ofener Str. 16/19, 26121, Oldenburg, Germany
    146 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...