Sensor Fusion for Self-Localisation of Automated Vehicles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03-07

AUTHORS

Christian Merfels, Cyrill Stachniss

ABSTRACT

Accurate pose estimation is key for a large number of real world applications. For example, automated cars require fast, recent, accurate, and highly available pose estimates for robust operation. Multiple redundant and complementary localisation systems are therefore installed on most automated vehicles. This work proposes a novel multi-sensor pose fusion approach for generically combining measurements from multiple localisation systems into a single pose estimate. We formulate our approach as a sliding window pose graph and enforce a particular chain graph structure, which enables efficient optimisation and a novel form of marginalisation. Our pose fusion approach scales from a filtering-based to a batch solution by increasing the size of the sliding window. It also adapts online to the available computational resources to guarantee high availability. We evaluate our approach on simulated data as well as on real data gathered with a prototype vehicle and demonstrate that our solution runs at 20 Hz, provides timely estimates, is accurate, and yields high availability. More... »

PAGES

113-126

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41064-017-0008-1

DOI

http://dx.doi.org/10.1007/s41064-017-0008-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084727440


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Automated Driving, Volkswagen Group Research, 38440, Wolfsburg, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Automated Driving, Volkswagen Group Research, 38440, Wolfsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Merfels", 
        "givenName": "Christian", 
        "id": "sg:person.014570313733.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014570313733.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Geodesy and Geoinformation, University of Bonn, 53115, Bonn, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10388.32", 
          "name": [
            "Institute of Geodesy and Geoinformation, University of Bonn, 53115, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stachniss", 
        "givenName": "Cyrill", 
        "id": "sg:person.015152144445.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015152144445.37"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-03-07", 
    "datePublishedReg": "2017-03-07", 
    "description": "Accurate pose estimation is key for a large number of real world applications. For example, automated cars require fast, recent, accurate, and highly available pose estimates for robust operation. Multiple redundant and complementary localisation systems are therefore installed on most automated vehicles. This work proposes a novel multi-sensor pose fusion approach for generically combining measurements from multiple localisation systems into a single pose estimate. We formulate our approach as a sliding window pose graph and enforce a particular chain graph structure, which enables efficient optimisation and a novel form of marginalisation. Our pose fusion approach scales from a filtering-based to a batch solution by increasing the size of the sliding window. It also adapts online to the available computational resources to guarantee high availability. We evaluate our approach on simulated data as well as on real data gathered with a prototype vehicle and demonstrate that our solution runs at 20\u00a0Hz, provides timely estimates, is accurate, and yields high availability.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s41064-017-0008-1", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320463", 
        "issn": [
          "2512-2789", 
          "2512-2819"
        ], 
        "name": "PFG \u2013 Journal of Photogrammetry, Remote Sensing and Geoinformation Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "85"
      }
    ], 
    "keywords": [
      "pose estimates", 
      "fusion approach", 
      "high availability", 
      "localisation system", 
      "accurate pose estimation", 
      "real-world applications", 
      "single pose estimate", 
      "available computational resources", 
      "pose graph", 
      "Self-Localisation", 
      "pose estimation", 
      "world applications", 
      "computational resources", 
      "sensor fusion", 
      "graph structure", 
      "Automated Vehicles", 
      "efficient optimization", 
      "real data", 
      "batch solution", 
      "prototype vehicle", 
      "robust operation", 
      "vehicles", 
      "large number", 
      "estimates", 
      "solution", 
      "graph", 
      "timely estimates", 
      "system", 
      "optimization", 
      "approach", 
      "estimation", 
      "availability", 
      "cars", 
      "resources", 
      "fusion", 
      "data", 
      "applications", 
      "operation", 
      "novel form", 
      "Hz", 
      "example", 
      "work", 
      "window", 
      "measurements", 
      "number", 
      "structure", 
      "form", 
      "size", 
      "marginalisation"
    ], 
    "name": "Sensor Fusion for Self-Localisation of Automated Vehicles", 
    "pagination": "113-126", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084727440"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41064-017-0008-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41064-017-0008-1", 
      "https://app.dimensions.ai/details/publication/pub.1084727440"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_745.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s41064-017-0008-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41064-017-0008-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41064-017-0008-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41064-017-0008-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41064-017-0008-1'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      20 PREDICATES      74 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41064-017-0008-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author Nf4772691d99b4469bee57573cd5ee953
5 schema:datePublished 2017-03-07
6 schema:datePublishedReg 2017-03-07
7 schema:description Accurate pose estimation is key for a large number of real world applications. For example, automated cars require fast, recent, accurate, and highly available pose estimates for robust operation. Multiple redundant and complementary localisation systems are therefore installed on most automated vehicles. This work proposes a novel multi-sensor pose fusion approach for generically combining measurements from multiple localisation systems into a single pose estimate. We formulate our approach as a sliding window pose graph and enforce a particular chain graph structure, which enables efficient optimisation and a novel form of marginalisation. Our pose fusion approach scales from a filtering-based to a batch solution by increasing the size of the sliding window. It also adapts online to the available computational resources to guarantee high availability. We evaluate our approach on simulated data as well as on real data gathered with a prototype vehicle and demonstrate that our solution runs at 20 Hz, provides timely estimates, is accurate, and yields high availability.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf Na407c980c92f42a7a22eec7649f7449c
11 Nbcc5e002e0b549f5a64e40ea2136e26a
12 sg:journal.1320463
13 schema:keywords Automated Vehicles
14 Hz
15 Self-Localisation
16 accurate pose estimation
17 applications
18 approach
19 availability
20 available computational resources
21 batch solution
22 cars
23 computational resources
24 data
25 efficient optimization
26 estimates
27 estimation
28 example
29 form
30 fusion
31 fusion approach
32 graph
33 graph structure
34 high availability
35 large number
36 localisation system
37 marginalisation
38 measurements
39 novel form
40 number
41 operation
42 optimization
43 pose estimates
44 pose estimation
45 pose graph
46 prototype vehicle
47 real data
48 real-world applications
49 resources
50 robust operation
51 sensor fusion
52 single pose estimate
53 size
54 solution
55 structure
56 system
57 timely estimates
58 vehicles
59 window
60 work
61 world applications
62 schema:name Sensor Fusion for Self-Localisation of Automated Vehicles
63 schema:pagination 113-126
64 schema:productId N02c4907578254268b6232574bf8d7cb4
65 N4de2a0ee35574e1ab43e7040dd3da593
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084727440
67 https://doi.org/10.1007/s41064-017-0008-1
68 schema:sdDatePublished 2022-11-24T21:02
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N9027778fca5845a7bbd653e6fa1c85ad
71 schema:url https://doi.org/10.1007/s41064-017-0008-1
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N02c4907578254268b6232574bf8d7cb4 schema:name dimensions_id
76 schema:value pub.1084727440
77 rdf:type schema:PropertyValue
78 N440e40ecfa604ae281c7c6bf0a712d66 rdf:first sg:person.015152144445.37
79 rdf:rest rdf:nil
80 N4de2a0ee35574e1ab43e7040dd3da593 schema:name doi
81 schema:value 10.1007/s41064-017-0008-1
82 rdf:type schema:PropertyValue
83 N9027778fca5845a7bbd653e6fa1c85ad schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Na407c980c92f42a7a22eec7649f7449c schema:volumeNumber 85
86 rdf:type schema:PublicationVolume
87 Nbcc5e002e0b549f5a64e40ea2136e26a schema:issueNumber 2
88 rdf:type schema:PublicationIssue
89 Nf4772691d99b4469bee57573cd5ee953 rdf:first sg:person.014570313733.91
90 rdf:rest N440e40ecfa604ae281c7c6bf0a712d66
91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information and Computing Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
95 schema:name Artificial Intelligence and Image Processing
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
98 schema:name Information Systems
99 rdf:type schema:DefinedTerm
100 sg:journal.1320463 schema:issn 2512-2789
101 2512-2819
102 schema:name PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science
103 schema:publisher Springer Nature
104 rdf:type schema:Periodical
105 sg:person.014570313733.91 schema:affiliation grid-institutes:None
106 schema:familyName Merfels
107 schema:givenName Christian
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014570313733.91
109 rdf:type schema:Person
110 sg:person.015152144445.37 schema:affiliation grid-institutes:grid.10388.32
111 schema:familyName Stachniss
112 schema:givenName Cyrill
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015152144445.37
114 rdf:type schema:Person
115 grid-institutes:None schema:alternateName Automated Driving, Volkswagen Group Research, 38440, Wolfsburg, Germany
116 schema:name Automated Driving, Volkswagen Group Research, 38440, Wolfsburg, Germany
117 rdf:type schema:Organization
118 grid-institutes:grid.10388.32 schema:alternateName Institute of Geodesy and Geoinformation, University of Bonn, 53115, Bonn, Germany
119 schema:name Institute of Geodesy and Geoinformation, University of Bonn, 53115, Bonn, Germany
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...