Improving SLAM by Exploiting Building Information from Publicly Available Maps and Localization Priors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-02-21

AUTHORS

Olga Vysotska, Cyrill Stachniss

ABSTRACT

Maps are needed for a wide range of applications. In the context of mobile robotics, the map learning problem under uncertainty is often referred to as the simultaneous localization and mapping problem. In this paper, we aim at exploiting already available information such as OpenStreetMap data within the Simultaneous Localization and Mapping (SLAM) problem. We achieve this by relating the information about buildings with the perceptions of the robot and generate constraints for the pose graph-based formulation of the SLAM problem. In addition to that, we present a way to select target locations for the robot so that by going there, the robot can expect to reduce its own pose uncertainty. This localizability information is generated directly from OpenStreetMap data and supports active localization. We implemented and evaluated our approach using real-world data taken in urban environments. Our experiments suggest that we are able to relate the newly built maps with information from OpenStreetMap with the laser range finder data from the robot and in this way improve the map quality. The extension to graph-based SLAM provides better aligned maps and adds only a marginal computational overhead. Furthermore, we illustrate that the localizability information is useful to evaluate the ability to localize the robot given a trajectory. More... »

PAGES

53-65

References to SciGraph publications

  • 1997-10. Globally Consistent Range Scan Alignment for Environment Mapping in AUTONOMOUS ROBOTS
  • 2010-08-31. Large scale graph-based SLAM using aerial images as prior information in AUTONOMOUS ROBOTS
  • 2017-03-04. Simultaneous Localization and Mapping in PHOTOGRAMMETRIE UND FERNERKUNDUNG
  • 2016. Photogrammetric Computer Vision, Statistics, Geometry, Orientation and Reconstruction in NONE
  • 1988-01. Active vision in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s41064-017-0006-3

    DOI

    http://dx.doi.org/10.1007/s41064-017-0006-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083919644


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Geodesy and Geoinformation, University of Bonn, Nussallee 15, 53115, Bonn, Germany", 
              "id": "http://www.grid.ac/institutes/grid.10388.32", 
              "name": [
                "Institute of Geodesy and Geoinformation, University of Bonn, Nussallee 15, 53115, Bonn, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vysotska", 
            "givenName": "Olga", 
            "id": "sg:person.010574277435.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010574277435.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Geodesy and Geoinformation, University of Bonn, Nussallee 15, 53115, Bonn, Germany", 
              "id": "http://www.grid.ac/institutes/grid.10388.32", 
              "name": [
                "Institute of Geodesy and Geoinformation, University of Bonn, Nussallee 15, 53115, Bonn, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stachniss", 
            "givenName": "Cyrill", 
            "id": "sg:person.015152144445.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015152144445.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1008854305733", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025138015", 
              "https://doi.org/10.1023/a:1008854305733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-11550-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018323515", 
              "https://doi.org/10.1007/978-3-319-11550-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-47094-7_49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084683948", 
              "https://doi.org/10.1007/978-3-662-47094-7_49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10514-010-9204-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013875940", 
              "https://doi.org/10.1007/s10514-010-9204-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00133571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043967702", 
              "https://doi.org/10.1007/bf00133571"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-02-21", 
        "datePublishedReg": "2017-02-21", 
        "description": "Maps are needed for a wide range of applications. In the context of mobile robotics, the map learning problem under uncertainty is often referred to as the simultaneous localization and mapping problem. In this paper, we aim at exploiting already available information such as OpenStreetMap data within the Simultaneous Localization and Mapping (SLAM) problem. We achieve this by relating the information about buildings with the perceptions of the robot and generate constraints for the pose graph-based formulation of the SLAM problem. In addition to that, we present a way to select target locations for the robot so that by going there, the robot can expect to reduce its own pose uncertainty. This localizability information is generated directly from OpenStreetMap data and supports active localization. We implemented and evaluated our approach using real-world data taken in urban environments. Our experiments suggest that we are able to relate the newly built maps with information from OpenStreetMap with the laser range finder data from the robot and in this way improve the map quality. The extension to graph-based SLAM provides better aligned maps and adds only a marginal computational overhead. Furthermore, we illustrate that the localizability information is useful to evaluate the ability to localize the robot given a trajectory.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s41064-017-0006-3", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1320463", 
            "issn": [
              "2512-2789", 
              "2512-2819"
            ], 
            "name": "PFG \u2013 Journal of Photogrammetry, Remote Sensing and Geoinformation Science", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "85"
          }
        ], 
        "keywords": [
          "simultaneous localization", 
          "mapping problem", 
          "laser range finder data", 
          "graph-based SLAM", 
          "range finder data", 
          "marginal computational overhead", 
          "real-world data", 
          "graph-based formulation", 
          "mobile robotics", 
          "computational overhead", 
          "pose uncertainty", 
          "SLAM problem", 
          "building information", 
          "learning problem", 
          "robot", 
          "active localization", 
          "generate constraints", 
          "map quality", 
          "SLAM", 
          "target location", 
          "information", 
          "available maps", 
          "overhead", 
          "robotics", 
          "urban environment", 
          "maps", 
          "available information", 
          "data", 
          "priors", 
          "constraints", 
          "way", 
          "uncertainty", 
          "environment", 
          "applications", 
          "localization", 
          "wide range", 
          "trajectories", 
          "extension", 
          "quality", 
          "context", 
          "buildings", 
          "experiments", 
          "location", 
          "ability", 
          "formulation", 
          "perception", 
          "addition", 
          "range", 
          "problem", 
          "paper", 
          "approach"
        ], 
        "name": "Improving SLAM by Exploiting Building Information from Publicly Available Maps and Localization Priors", 
        "pagination": "53-65", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083919644"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s41064-017-0006-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s41064-017-0006-3", 
          "https://app.dimensions.ai/details/publication/pub.1083919644"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_716.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s41064-017-0006-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41064-017-0006-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41064-017-0006-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41064-017-0006-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41064-017-0006-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    139 TRIPLES      21 PREDICATES      81 URIs      67 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s41064-017-0006-3 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 anzsrc-for:0806
    4 schema:author N0e1411acda9842ef9c1ea8aff1283d23
    5 schema:citation sg:pub.10.1007/978-3-319-11550-4
    6 sg:pub.10.1007/978-3-662-47094-7_49
    7 sg:pub.10.1007/bf00133571
    8 sg:pub.10.1007/s10514-010-9204-1
    9 sg:pub.10.1023/a:1008854305733
    10 schema:datePublished 2017-02-21
    11 schema:datePublishedReg 2017-02-21
    12 schema:description Maps are needed for a wide range of applications. In the context of mobile robotics, the map learning problem under uncertainty is often referred to as the simultaneous localization and mapping problem. In this paper, we aim at exploiting already available information such as OpenStreetMap data within the Simultaneous Localization and Mapping (SLAM) problem. We achieve this by relating the information about buildings with the perceptions of the robot and generate constraints for the pose graph-based formulation of the SLAM problem. In addition to that, we present a way to select target locations for the robot so that by going there, the robot can expect to reduce its own pose uncertainty. This localizability information is generated directly from OpenStreetMap data and supports active localization. We implemented and evaluated our approach using real-world data taken in urban environments. Our experiments suggest that we are able to relate the newly built maps with information from OpenStreetMap with the laser range finder data from the robot and in this way improve the map quality. The extension to graph-based SLAM provides better aligned maps and adds only a marginal computational overhead. Furthermore, we illustrate that the localizability information is useful to evaluate the ability to localize the robot given a trajectory.
    13 schema:genre article
    14 schema:isAccessibleForFree false
    15 schema:isPartOf Na070c5e2f5d742b69b220bbe3e5da437
    16 Nf6c6d7b9c94d47339d60066761969409
    17 sg:journal.1320463
    18 schema:keywords SLAM
    19 SLAM problem
    20 ability
    21 active localization
    22 addition
    23 applications
    24 approach
    25 available information
    26 available maps
    27 building information
    28 buildings
    29 computational overhead
    30 constraints
    31 context
    32 data
    33 environment
    34 experiments
    35 extension
    36 formulation
    37 generate constraints
    38 graph-based SLAM
    39 graph-based formulation
    40 information
    41 laser range finder data
    42 learning problem
    43 localization
    44 location
    45 map quality
    46 mapping problem
    47 maps
    48 marginal computational overhead
    49 mobile robotics
    50 overhead
    51 paper
    52 perception
    53 pose uncertainty
    54 priors
    55 problem
    56 quality
    57 range
    58 range finder data
    59 real-world data
    60 robot
    61 robotics
    62 simultaneous localization
    63 target location
    64 trajectories
    65 uncertainty
    66 urban environment
    67 way
    68 wide range
    69 schema:name Improving SLAM by Exploiting Building Information from Publicly Available Maps and Localization Priors
    70 schema:pagination 53-65
    71 schema:productId N1521200193b24afbba93bcd3ad369bb4
    72 N3d00550692564fb989789437ade5615b
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083919644
    74 https://doi.org/10.1007/s41064-017-0006-3
    75 schema:sdDatePublished 2022-11-24T21:01
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher N0c6fa7db761d4d78bc7f0ab67ee170ae
    78 schema:url https://doi.org/10.1007/s41064-017-0006-3
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N0c6fa7db761d4d78bc7f0ab67ee170ae schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 N0e1411acda9842ef9c1ea8aff1283d23 rdf:first sg:person.010574277435.43
    85 rdf:rest N6a94feb454fd4553b96e117b83caae59
    86 N1521200193b24afbba93bcd3ad369bb4 schema:name doi
    87 schema:value 10.1007/s41064-017-0006-3
    88 rdf:type schema:PropertyValue
    89 N3d00550692564fb989789437ade5615b schema:name dimensions_id
    90 schema:value pub.1083919644
    91 rdf:type schema:PropertyValue
    92 N6a94feb454fd4553b96e117b83caae59 rdf:first sg:person.015152144445.37
    93 rdf:rest rdf:nil
    94 Na070c5e2f5d742b69b220bbe3e5da437 schema:volumeNumber 85
    95 rdf:type schema:PublicationVolume
    96 Nf6c6d7b9c94d47339d60066761969409 schema:issueNumber 1
    97 rdf:type schema:PublicationIssue
    98 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Information and Computing Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Artificial Intelligence and Image Processing
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Information Systems
    106 rdf:type schema:DefinedTerm
    107 sg:journal.1320463 schema:issn 2512-2789
    108 2512-2819
    109 schema:name PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science
    110 schema:publisher Springer Nature
    111 rdf:type schema:Periodical
    112 sg:person.010574277435.43 schema:affiliation grid-institutes:grid.10388.32
    113 schema:familyName Vysotska
    114 schema:givenName Olga
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010574277435.43
    116 rdf:type schema:Person
    117 sg:person.015152144445.37 schema:affiliation grid-institutes:grid.10388.32
    118 schema:familyName Stachniss
    119 schema:givenName Cyrill
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015152144445.37
    121 rdf:type schema:Person
    122 sg:pub.10.1007/978-3-319-11550-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018323515
    123 https://doi.org/10.1007/978-3-319-11550-4
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/978-3-662-47094-7_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084683948
    126 https://doi.org/10.1007/978-3-662-47094-7_49
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/bf00133571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043967702
    129 https://doi.org/10.1007/bf00133571
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s10514-010-9204-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013875940
    132 https://doi.org/10.1007/s10514-010-9204-1
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1023/a:1008854305733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025138015
    135 https://doi.org/10.1023/a:1008854305733
    136 rdf:type schema:CreativeWork
    137 grid-institutes:grid.10388.32 schema:alternateName Institute of Geodesy and Geoinformation, University of Bonn, Nussallee 15, 53115, Bonn, Germany
    138 schema:name Institute of Geodesy and Geoinformation, University of Bonn, Nussallee 15, 53115, Bonn, Germany
    139 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...