Ontology type: schema:ScholarlyArticle Open Access: True
2018-03
AUTHORSFeda AlMuhisen, Nicolas Durand, Mohamed Quafafou
ABSTRACTTrajectory mining is a challenging and crucial problem especially in the context of smart cities where many applications depend on human behaviors. In this paper, we characterize such behaviors by patterns, where each pattern type represents a particular behavior, e.g., emerging, latent, lost. From GPS raw data, we introduce algorithms that allow computing a formal concept lattice which encodes optimal correspondences between hidden patterns and trajectories. In order to detect behaviors, we propose an algorithm that analyzes the evolution of the discovered formal concepts over time. The method generates tagged city maps to easily visualize the resulting behaviors at different spatio-temporal granularity values. Refined or coarse analysis can thus be performed for a given situation. Experimental results using real-world GPS trajectory data show the relevance of the proposed method and the usefulness of the resulting tagged city maps. More... »
PAGES169-187
http://scigraph.springernature.com/pub.10.1007/s41060-017-0076-8
DOIhttp://dx.doi.org/10.1007/s41060-017-0076-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1100622247
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratoire des Sciences de l'Information et des Syst\u00e8mes",
"id": "https://www.grid.ac/institutes/grid.462878.7",
"name": [
"CNRS, ENSAM, LSIS, Aix Marseille Univ, Universit\u00e9 de Toulon, Marseille, France"
],
"type": "Organization"
},
"familyName": "AlMuhisen",
"givenName": "Feda",
"id": "sg:person.014312667264.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014312667264.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire des Sciences de l'Information et des Syst\u00e8mes",
"id": "https://www.grid.ac/institutes/grid.462878.7",
"name": [
"CNRS, ENSAM, LSIS, Aix Marseille Univ, Universit\u00e9 de Toulon, Marseille, France"
],
"type": "Organization"
},
"familyName": "Durand",
"givenName": "Nicolas",
"id": "sg:person.011443456242.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011443456242.37"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire des Sciences de l'Information et des Syst\u00e8mes",
"id": "https://www.grid.ac/institutes/grid.462878.7",
"name": [
"CNRS, ENSAM, LSIS, Aix Marseille Univ, Universit\u00e9 de Toulon, Marseille, France"
],
"type": "Organization"
},
"familyName": "Quafafou",
"givenName": "Mohamed",
"id": "sg:person.015575271503.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015575271503.84"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/s0306-4379(99)00003-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000463430"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1472-6947-13-130",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001189850",
"https://doi.org/10.1186/1472-6947-13-130"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1247480.1247546",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002231199"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10707-014-0220-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003273098",
"https://doi.org/10.1007/s10707-014-0220-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-49784-5_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003479053",
"https://doi.org/10.1007/978-3-662-49784-5_2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/2743025",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004956089"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/312129.312191",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004969014"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tkde.2014.2377742",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011236283"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1807167.1807319",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014129774"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4614-1629-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014579661",
"https://doi.org/10.1007/978-1-4614-1629-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4614-1629-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014579661",
"https://doi.org/10.1007/978-1-4614-1629-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/2020408.2020462",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016046181"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ins.2009.02.016",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018494746"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1281192.1281230",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019006011"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.pmcj.2013.06.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019737295"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/2501654.2501656",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026389776"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3390/e18090327",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028652472"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/170035.170072",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028726331"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-24775-3_16",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033879661",
"https://doi.org/10.1007/978-3-540-24775-3_16"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-24775-3_16",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033879661",
"https://doi.org/10.1007/978-3-540-24775-3_16"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-46295-0_26",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034644799",
"https://doi.org/10.1007/978-3-319-46295-0_26"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-10160-6_32",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036497668",
"https://doi.org/10.1007/978-3-319-10160-6_32"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eswa.2013.05.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041619607"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.comgeo.2007.10.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046297554"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1869790.1869807",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048794633"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00778-014-0369-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050899474",
"https://doi.org/10.1007/s00778-014-0369-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/mcom.2013.6525604",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061395867"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tkde.2005.60",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061661463"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tkde.2014.2345405",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061662940"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.14257/ijgdc.2015.8.2.01",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1067234691"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.14257/ijgdc.2015.8.2.01",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1067234691"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.14778/1453856.1453972",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1067367399"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icws.2016.19",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094877293"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icss.2015.31",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094952625"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5220/0004543401430151",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1099381742"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.14257/astl.2016.123.37",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1108090853"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-03",
"datePublishedReg": "2018-03-01",
"description": "Trajectory mining is a challenging and crucial problem especially in the context of smart cities where many applications depend on human behaviors. In this paper, we characterize such behaviors by patterns, where each pattern type represents a particular behavior, e.g., emerging, latent, lost. From GPS raw data, we introduce algorithms that allow computing a formal concept lattice which encodes optimal correspondences between hidden patterns and trajectories. In order to detect behaviors, we propose an algorithm that analyzes the evolution of the discovered formal concepts over time. The method generates tagged city maps to easily visualize the resulting behaviors at different spatio-temporal granularity values. Refined or coarse analysis can thus be performed for a given situation. Experimental results using real-world GPS trajectory data show the relevance of the proposed method and the usefulness of the resulting tagged city maps.",
"genre": "research_article",
"id": "sg:pub.10.1007/s41060-017-0076-8",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1156617",
"issn": [
"2364-415X",
"2364-4168"
],
"name": "International Journal of Data Science and Analytics",
"type": "Periodical"
},
{
"issueNumber": "2-3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "5"
}
],
"name": "Detecting behavior types of moving object trajectories",
"pagination": "169-187",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"ca39f9cc5a58a133762e799fda7e2be35167da948198beef817a82068d2e7054"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s41060-017-0076-8"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1100622247"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s41060-017-0076-8",
"https://app.dimensions.ai/details/publication/pub.1100622247"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T14:23",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000603.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/s41060-017-0076-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41060-017-0076-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41060-017-0076-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41060-017-0076-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41060-017-0076-8'
This table displays all metadata directly associated to this object as RDF triples.
182 TRIPLES
21 PREDICATES
60 URIs
19 LITERALS
7 BLANK NODES