Scalable and flexible clustering solutions for mobile phone-based population indicators View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07-28

AUTHORS

Alessandro Lulli, Lorenzo Gabrielli, Patrizio Dazzi, Matteo Dell’Amico, Pietro Michiardi, Mirco Nanni, Laura Ricci

ABSTRACT

Mobile phones have an unprecedented rate of penetration across the world. Such devices produce a large amount of data that have been used on different domains. In this work, we make use of mobile calls to monitor the presence of individuals region by region. Traditionally, this activity has been conducted by means of censuses and surveys. Nowadays, technologies open new possibilities to analyse the individual calling behaviour to determine the amount of residents, commuters and visitors moving in an area. To this end, in this paper we provide a clustering technique completely unsupervised able to cluster data by exploring an arbitrary similarity metric. We make use of such technique, and we define metric to analyse mobile calls and individual profiles. The approach provides better population estimation with respect to state of the art when results are compared with real census data and greatly improves the execution time of a previous work of some of the authors of this paper. The scalability and flexibility of the proposed framework enables novel scenarios for the characterization of people by means of data derived from mobile users, ranging from the nearly real-time estimation of presences to the definition of complex, uncommon user archetypes. More... »

PAGES

285-299

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s41060-017-0065-y

DOI

http://dx.doi.org/10.1007/s41060-017-0065-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090911665


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Genoa, Genoa, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "University of Genoa, Genoa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lulli", 
        "givenName": "Alessandro", 
        "id": "sg:person.012221662054.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012221662054.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ISTI, CNR, Pisa, Italy", 
          "id": "http://www.grid.ac/institutes/grid.451498.5", 
          "name": [
            "ISTI, CNR, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gabrielli", 
        "givenName": "Lorenzo", 
        "id": "sg:person.016220414735.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016220414735.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ISTI, CNR, Pisa, Italy", 
          "id": "http://www.grid.ac/institutes/grid.451498.5", 
          "name": [
            "ISTI, CNR, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dazzi", 
        "givenName": "Patrizio", 
        "id": "sg:person.016657740640.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016657740640.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Symantec Research Labs, Sophia Antipolis, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Symantec Research Labs, Sophia Antipolis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dell\u2019Amico", 
        "givenName": "Matteo", 
        "id": "sg:person.015357631205.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015357631205.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "EURECOM, Campus SophiaTech, Biot, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "EURECOM, Campus SophiaTech, Biot, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michiardi", 
        "givenName": "Pietro", 
        "id": "sg:person.016057235273.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016057235273.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ISTI, CNR, Pisa, Italy", 
          "id": "http://www.grid.ac/institutes/grid.451498.5", 
          "name": [
            "ISTI, CNR, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nanni", 
        "givenName": "Mirco", 
        "id": "sg:person.07445174245.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07445174245.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pisa, Pisa, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5395.a", 
          "name": [
            "University of Pisa, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ricci", 
        "givenName": "Laura", 
        "id": "sg:person.014614560163.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014614560163.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-07-28", 
    "datePublishedReg": "2017-07-28", 
    "description": "Mobile phones have an unprecedented rate of penetration across the world. Such devices produce a large amount of data that have been used on different domains. In this work, we make use of mobile calls to monitor the presence of individuals region by region. Traditionally, this activity has been conducted by means of censuses and surveys. Nowadays, technologies open new possibilities to analyse the individual calling behaviour to determine the amount of residents, commuters and visitors moving in an area. To this end, in this paper we provide a clustering technique completely unsupervised able to cluster data by exploring an arbitrary similarity metric. We make use of such technique, and we define metric to analyse mobile calls and individual profiles. The approach provides better population estimation with respect to state of the art when results are compared with real census data and greatly improves the execution time of a previous work of some of the authors of this paper. The scalability and flexibility of the proposed framework enables novel scenarios for the characterization of people by means of data derived from mobile users, ranging from the nearly real-time estimation of presences to the definition of complex, uncommon user archetypes.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s41060-017-0065-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4273829", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1156617", 
        "issn": [
          "2364-415X", 
          "2364-4168"
        ], 
        "name": "International Journal of Data Science and Analytics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "real census data", 
      "mobile calls", 
      "better population estimation", 
      "real-time estimation", 
      "means of census", 
      "mobile users", 
      "clustering solutions", 
      "execution time", 
      "similarity metric", 
      "characterization of people", 
      "mobile phones", 
      "amount of residents", 
      "user archetypes", 
      "different domains", 
      "such techniques", 
      "previous work", 
      "novel scenario", 
      "unprecedented rate", 
      "large amount", 
      "such devices", 
      "scalability", 
      "users", 
      "means of data", 
      "phones", 
      "estimation", 
      "population estimation", 
      "metrics", 
      "new possibilities", 
      "technique", 
      "scenarios", 
      "framework", 
      "technology", 
      "calls", 
      "flexibility", 
      "work", 
      "data", 
      "individual regions", 
      "art", 
      "devices", 
      "domain", 
      "individual profiles", 
      "solution", 
      "use", 
      "definition", 
      "means", 
      "commuters", 
      "amount", 
      "world", 
      "visitors", 
      "archetypes", 
      "time", 
      "analyse", 
      "people", 
      "results", 
      "end", 
      "state", 
      "respect", 
      "authors", 
      "area", 
      "possibility", 
      "behavior", 
      "census data", 
      "survey", 
      "region", 
      "rate", 
      "indicators", 
      "penetration", 
      "profile", 
      "activity", 
      "census", 
      "presence", 
      "residents", 
      "characterization", 
      "population indicators", 
      "paper", 
      "approach", 
      "arbitrary similarity metric", 
      "analyse mobile calls", 
      "uncommon user archetypes", 
      "flexible clustering solutions", 
      "mobile phone-based population indicators", 
      "phone-based population indicators"
    ], 
    "name": "Scalable and flexible clustering solutions for mobile phone-based population indicators", 
    "pagination": "285-299", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090911665"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s41060-017-0065-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s41060-017-0065-y", 
      "https://app.dimensions.ai/details/publication/pub.1090911665"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_736.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s41060-017-0065-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s41060-017-0065-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s41060-017-0065-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s41060-017-0065-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s41060-017-0065-y'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      107 URIs      99 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s41060-017-0065-y schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N0b7543f4058445efb6532e9885f767a9
4 schema:datePublished 2017-07-28
5 schema:datePublishedReg 2017-07-28
6 schema:description Mobile phones have an unprecedented rate of penetration across the world. Such devices produce a large amount of data that have been used on different domains. In this work, we make use of mobile calls to monitor the presence of individuals region by region. Traditionally, this activity has been conducted by means of censuses and surveys. Nowadays, technologies open new possibilities to analyse the individual calling behaviour to determine the amount of residents, commuters and visitors moving in an area. To this end, in this paper we provide a clustering technique completely unsupervised able to cluster data by exploring an arbitrary similarity metric. We make use of such technique, and we define metric to analyse mobile calls and individual profiles. The approach provides better population estimation with respect to state of the art when results are compared with real census data and greatly improves the execution time of a previous work of some of the authors of this paper. The scalability and flexibility of the proposed framework enables novel scenarios for the characterization of people by means of data derived from mobile users, ranging from the nearly real-time estimation of presences to the definition of complex, uncommon user archetypes.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf Na8e31f5007494be28e89556c04e51007
11 Nd909724210fa4cfcb08b8ee277b00f40
12 sg:journal.1156617
13 schema:keywords activity
14 amount
15 amount of residents
16 analyse
17 analyse mobile calls
18 approach
19 arbitrary similarity metric
20 archetypes
21 area
22 art
23 authors
24 behavior
25 better population estimation
26 calls
27 census
28 census data
29 characterization
30 characterization of people
31 clustering solutions
32 commuters
33 data
34 definition
35 devices
36 different domains
37 domain
38 end
39 estimation
40 execution time
41 flexibility
42 flexible clustering solutions
43 framework
44 indicators
45 individual profiles
46 individual regions
47 large amount
48 means
49 means of census
50 means of data
51 metrics
52 mobile calls
53 mobile phone-based population indicators
54 mobile phones
55 mobile users
56 new possibilities
57 novel scenario
58 paper
59 penetration
60 people
61 phone-based population indicators
62 phones
63 population estimation
64 population indicators
65 possibility
66 presence
67 previous work
68 profile
69 rate
70 real census data
71 real-time estimation
72 region
73 residents
74 respect
75 results
76 scalability
77 scenarios
78 similarity metric
79 solution
80 state
81 such devices
82 such techniques
83 survey
84 technique
85 technology
86 time
87 uncommon user archetypes
88 unprecedented rate
89 use
90 user archetypes
91 users
92 visitors
93 work
94 world
95 schema:name Scalable and flexible clustering solutions for mobile phone-based population indicators
96 schema:pagination 285-299
97 schema:productId Ndeb0445d65294726b81d5c3d62627153
98 Nf564f952fcca4107bceddbb026d8618d
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090911665
100 https://doi.org/10.1007/s41060-017-0065-y
101 schema:sdDatePublished 2021-11-01T18:30
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher Nba27688b50494e29bf96c144cfa289dd
104 schema:url https://doi.org/10.1007/s41060-017-0065-y
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N0b7543f4058445efb6532e9885f767a9 rdf:first sg:person.012221662054.68
109 rdf:rest N920364ca1b544015913835006985cc64
110 N2d3cd01aaff14babb8e1215f1d219d6f rdf:first sg:person.015357631205.96
111 rdf:rest Nb8b64d22f3984e6f944bad4d4e10efa8
112 N8a79405e361343ce8e6fec81356e8fb0 rdf:first sg:person.016657740640.14
113 rdf:rest N2d3cd01aaff14babb8e1215f1d219d6f
114 N900dd1113e6d477eae1bb866b4c08bfd rdf:first sg:person.014614560163.48
115 rdf:rest rdf:nil
116 N920364ca1b544015913835006985cc64 rdf:first sg:person.016220414735.04
117 rdf:rest N8a79405e361343ce8e6fec81356e8fb0
118 N97e5c1b960df4ed582e4c99c8ff069c1 rdf:first sg:person.07445174245.45
119 rdf:rest N900dd1113e6d477eae1bb866b4c08bfd
120 Na8e31f5007494be28e89556c04e51007 schema:volumeNumber 4
121 rdf:type schema:PublicationVolume
122 Nb8b64d22f3984e6f944bad4d4e10efa8 rdf:first sg:person.016057235273.37
123 rdf:rest N97e5c1b960df4ed582e4c99c8ff069c1
124 Nba27688b50494e29bf96c144cfa289dd schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 Nd909724210fa4cfcb08b8ee277b00f40 schema:issueNumber 4
127 rdf:type schema:PublicationIssue
128 Ndeb0445d65294726b81d5c3d62627153 schema:name dimensions_id
129 schema:value pub.1090911665
130 rdf:type schema:PropertyValue
131 Nf564f952fcca4107bceddbb026d8618d schema:name doi
132 schema:value 10.1007/s41060-017-0065-y
133 rdf:type schema:PropertyValue
134 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
135 schema:name Information and Computing Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
138 schema:name Information Systems
139 rdf:type schema:DefinedTerm
140 sg:grant.4273829 http://pending.schema.org/fundedItem sg:pub.10.1007/s41060-017-0065-y
141 rdf:type schema:MonetaryGrant
142 sg:journal.1156617 schema:issn 2364-415X
143 2364-4168
144 schema:name International Journal of Data Science and Analytics
145 schema:publisher Springer Nature
146 rdf:type schema:Periodical
147 sg:person.012221662054.68 schema:affiliation grid-institutes:grid.5606.5
148 schema:familyName Lulli
149 schema:givenName Alessandro
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012221662054.68
151 rdf:type schema:Person
152 sg:person.014614560163.48 schema:affiliation grid-institutes:grid.5395.a
153 schema:familyName Ricci
154 schema:givenName Laura
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014614560163.48
156 rdf:type schema:Person
157 sg:person.015357631205.96 schema:affiliation grid-institutes:None
158 schema:familyName Dell’Amico
159 schema:givenName Matteo
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015357631205.96
161 rdf:type schema:Person
162 sg:person.016057235273.37 schema:affiliation grid-institutes:grid.28848.3e
163 schema:familyName Michiardi
164 schema:givenName Pietro
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016057235273.37
166 rdf:type schema:Person
167 sg:person.016220414735.04 schema:affiliation grid-institutes:grid.451498.5
168 schema:familyName Gabrielli
169 schema:givenName Lorenzo
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016220414735.04
171 rdf:type schema:Person
172 sg:person.016657740640.14 schema:affiliation grid-institutes:grid.451498.5
173 schema:familyName Dazzi
174 schema:givenName Patrizio
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016657740640.14
176 rdf:type schema:Person
177 sg:person.07445174245.45 schema:affiliation grid-institutes:grid.451498.5
178 schema:familyName Nanni
179 schema:givenName Mirco
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07445174245.45
181 rdf:type schema:Person
182 grid-institutes:None schema:alternateName Symantec Research Labs, Sophia Antipolis, France
183 schema:name Symantec Research Labs, Sophia Antipolis, France
184 rdf:type schema:Organization
185 grid-institutes:grid.28848.3e schema:alternateName EURECOM, Campus SophiaTech, Biot, France
186 schema:name EURECOM, Campus SophiaTech, Biot, France
187 rdf:type schema:Organization
188 grid-institutes:grid.451498.5 schema:alternateName ISTI, CNR, Pisa, Italy
189 schema:name ISTI, CNR, Pisa, Italy
190 rdf:type schema:Organization
191 grid-institutes:grid.5395.a schema:alternateName University of Pisa, Pisa, Italy
192 schema:name University of Pisa, Pisa, Italy
193 rdf:type schema:Organization
194 grid-institutes:grid.5606.5 schema:alternateName University of Genoa, Genoa, Italy
195 schema:name University of Genoa, Genoa, Italy
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...