ANN Model for Predicting the Compressive Strength of Circular Steel-Confined Concrete View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03

AUTHORS

M. Ahmadi, H. Naderpour, A. Kheyroddin

ABSTRACT

Concrete filled steel tube is constructed using various tube shapes to obtain most efficient properties of concrete core and steel tube. The compressive strength of concrete is considerably increased by the lateral confined steel tube in circular concrete filled steel tube (CCFT). The aim of this study is to present an integrated approach for predicting the steel-confined compressive strength of concrete in CCFT columns under axial loading based on large number of experimental data using artificial neural networks. Neural networks process information in a similar way that the human brain does. Neural networks learn by example. The main parameters investigated in this study include the compressive strength of unconfined concrete (fc′), outer diameter (D) and length (L) of column, wall thickness (t) and tensile yield stress (Fy) of steel tube. Subsequently, using the idealized network, empirical equations are developed for the confinement effect. The results of proposed model are compared with those of existing models on the basis of the experimental results. The findings indicate the precision and efficiency of ANN model for predicting the capacity of CCFT columns. More... »

PAGES

213-221

References to SciGraph publications

Journal

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40999-016-0096-0

DOI

http://dx.doi.org/10.1007/s40999-016-0096-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032931579


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Semnan University", 
          "id": "https://www.grid.ac/institutes/grid.412475.1", 
          "name": [
            "Faculty of Civil Engineering, Semnan University, Semnan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahmadi", 
        "givenName": "M.", 
        "id": "sg:person.016137155671.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137155671.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semnan University", 
          "id": "https://www.grid.ac/institutes/grid.412475.1", 
          "name": [
            "Faculty of Civil Engineering, Semnan University, Semnan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naderpour", 
        "givenName": "H.", 
        "id": "sg:person.012527061552.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012527061552.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semnan University", 
          "id": "https://www.grid.ac/institutes/grid.412475.1", 
          "name": [
            "Faculty of Civil Engineering, Semnan University, Semnan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kheyroddin", 
        "givenName": "A.", 
        "id": "sg:person.014744072124.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014744072124.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0143-974x(02)00076-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000486983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0143-974x(02)00076-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000486983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/l98-009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008256350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2010.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016075702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2007.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016783676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0143-974x(03)00102-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018706676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0143-974x(03)00102-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018706676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acme.2014.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021993406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcsr.2006.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028326956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcsr.2003.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029246074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0008-8846(00)00345-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035678346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0141-0296(03)00004-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037704606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0141-0296(03)00004-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037704606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2010.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038285327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-05549-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042155334", 
          "https://doi.org/10.1007/978-3-319-05549-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-05549-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042155334", 
          "https://doi.org/10.1007/978-3-319-05549-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcsr.2014.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043893142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcsr.2004.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046012603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcsr.2010.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047489119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9445(2000)126:11(1295)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057599671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9445(2003)129:4(554)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057600396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9445(2004)130:2(180)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057600583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1090-0268(2006)10:2(125)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057620663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.1480419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062266950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14359/7525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067281211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14359/7575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067281260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14359/777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067281464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/978-1-59140-902-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096031637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/978-1-59140-902-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096031637"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03", 
    "datePublishedReg": "2017-03-01", 
    "description": "Concrete filled steel tube is constructed using various tube shapes to obtain most efficient properties of concrete core and steel tube. The compressive strength of concrete is considerably increased by the lateral confined steel tube in circular concrete filled steel tube (CCFT). The aim of this study is to present an integrated approach for predicting the steel-confined compressive strength of concrete in CCFT columns under axial loading based on large number of experimental data using artificial neural networks. Neural networks process information in a similar way that the human brain does. Neural networks learn by example. The main parameters investigated in this study include the compressive strength of unconfined concrete (fc\u2032), outer diameter (D) and length (L) of column, wall thickness (t) and tensile yield stress (Fy) of steel tube. Subsequently, using the idealized network, empirical equations are developed for the confinement effect. The results of proposed model are compared with those of existing models on the basis of the experimental results. The findings indicate the precision and efficiency of ANN model for predicting the capacity of CCFT columns.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40999-016-0096-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1151599", 
        "issn": [
          "1735-0522", 
          "2383-3874"
        ], 
        "name": "International Journal of Civil Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "ANN Model for Predicting the Compressive Strength of Circular Steel-Confined Concrete", 
    "pagination": "213-221", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9ce1ca5f6494c74f8e220e41c88d710743b87ba4c375b29d438cc2b7cf4b9ce0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40999-016-0096-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032931579"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40999-016-0096-0", 
      "https://app.dimensions.ai/details/publication/pub.1032931579"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70061_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40999-016-0096-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40999-016-0096-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40999-016-0096-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40999-016-0096-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40999-016-0096-0'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40999-016-0096-0 schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author Nf9c63167474140e88672db38c8b0f952
4 schema:citation sg:pub.10.1007/978-3-319-05549-7
5 https://doi.org/10.1016/j.acme.2014.01.006
6 https://doi.org/10.1016/j.compositesb.2010.03.003
7 https://doi.org/10.1016/j.compstruct.2010.04.008
8 https://doi.org/10.1016/j.engstruct.2007.11.002
9 https://doi.org/10.1016/j.jcsr.2003.10.001
10 https://doi.org/10.1016/j.jcsr.2004.06.006
11 https://doi.org/10.1016/j.jcsr.2006.03.009
12 https://doi.org/10.1016/j.jcsr.2010.10.004
13 https://doi.org/10.1016/j.jcsr.2014.10.007
14 https://doi.org/10.1016/s0008-8846(00)00345-8
15 https://doi.org/10.1016/s0141-0296(03)00004-x
16 https://doi.org/10.1016/s0143-974x(02)00076-7
17 https://doi.org/10.1016/s0143-974x(03)00102-0
18 https://doi.org/10.1061/(asce)0733-9445(2000)126:11(1295)
19 https://doi.org/10.1061/(asce)0733-9445(2003)129:4(554)
20 https://doi.org/10.1061/(asce)0733-9445(2004)130:2(180)
21 https://doi.org/10.1061/(asce)1090-0268(2006)10:2(125)
22 https://doi.org/10.1121/1.1480419
23 https://doi.org/10.1139/l98-009
24 https://doi.org/10.14359/7525
25 https://doi.org/10.14359/7575
26 https://doi.org/10.14359/777
27 https://doi.org/10.4018/978-1-59140-902-1
28 schema:datePublished 2017-03
29 schema:datePublishedReg 2017-03-01
30 schema:description Concrete filled steel tube is constructed using various tube shapes to obtain most efficient properties of concrete core and steel tube. The compressive strength of concrete is considerably increased by the lateral confined steel tube in circular concrete filled steel tube (CCFT). The aim of this study is to present an integrated approach for predicting the steel-confined compressive strength of concrete in CCFT columns under axial loading based on large number of experimental data using artificial neural networks. Neural networks process information in a similar way that the human brain does. Neural networks learn by example. The main parameters investigated in this study include the compressive strength of unconfined concrete (fc′), outer diameter (D) and length (L) of column, wall thickness (t) and tensile yield stress (Fy) of steel tube. Subsequently, using the idealized network, empirical equations are developed for the confinement effect. The results of proposed model are compared with those of existing models on the basis of the experimental results. The findings indicate the precision and efficiency of ANN model for predicting the capacity of CCFT columns.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N4b9b80285a564e08a050526e298a273e
35 N78c62223ada74a5299bba5d2530e5f5c
36 sg:journal.1151599
37 schema:name ANN Model for Predicting the Compressive Strength of Circular Steel-Confined Concrete
38 schema:pagination 213-221
39 schema:productId N40bd70a75e984c8a8a758cbd2c42c195
40 N8afd90f3b6e94b92b215b794b955cb4d
41 Nba1f095f998e4e10a8d33ec0a48d23fd
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032931579
43 https://doi.org/10.1007/s40999-016-0096-0
44 schema:sdDatePublished 2019-04-11T12:42
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Nced7bf9f60b948ff987066ec9ef995b9
47 schema:url https://link.springer.com/10.1007%2Fs40999-016-0096-0
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N2184542334ba4d88a08a2225a4298db2 rdf:first sg:person.014744072124.17
52 rdf:rest rdf:nil
53 N40bd70a75e984c8a8a758cbd2c42c195 schema:name dimensions_id
54 schema:value pub.1032931579
55 rdf:type schema:PropertyValue
56 N4b9b80285a564e08a050526e298a273e schema:volumeNumber 15
57 rdf:type schema:PublicationVolume
58 N78c62223ada74a5299bba5d2530e5f5c schema:issueNumber 2
59 rdf:type schema:PublicationIssue
60 N8afd90f3b6e94b92b215b794b955cb4d schema:name doi
61 schema:value 10.1007/s40999-016-0096-0
62 rdf:type schema:PropertyValue
63 Nba1f095f998e4e10a8d33ec0a48d23fd schema:name readcube_id
64 schema:value 9ce1ca5f6494c74f8e220e41c88d710743b87ba4c375b29d438cc2b7cf4b9ce0
65 rdf:type schema:PropertyValue
66 Nced7bf9f60b948ff987066ec9ef995b9 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nee1bb663af374176aec8f73b16c4e28e rdf:first sg:person.012527061552.16
69 rdf:rest N2184542334ba4d88a08a2225a4298db2
70 Nf9c63167474140e88672db38c8b0f952 rdf:first sg:person.016137155671.40
71 rdf:rest Nee1bb663af374176aec8f73b16c4e28e
72 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
73 schema:name Engineering
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
76 schema:name Civil Engineering
77 rdf:type schema:DefinedTerm
78 sg:journal.1151599 schema:issn 1735-0522
79 2383-3874
80 schema:name International Journal of Civil Engineering
81 rdf:type schema:Periodical
82 sg:person.012527061552.16 schema:affiliation https://www.grid.ac/institutes/grid.412475.1
83 schema:familyName Naderpour
84 schema:givenName H.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012527061552.16
86 rdf:type schema:Person
87 sg:person.014744072124.17 schema:affiliation https://www.grid.ac/institutes/grid.412475.1
88 schema:familyName Kheyroddin
89 schema:givenName A.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014744072124.17
91 rdf:type schema:Person
92 sg:person.016137155671.40 schema:affiliation https://www.grid.ac/institutes/grid.412475.1
93 schema:familyName Ahmadi
94 schema:givenName M.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137155671.40
96 rdf:type schema:Person
97 sg:pub.10.1007/978-3-319-05549-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042155334
98 https://doi.org/10.1007/978-3-319-05549-7
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.acme.2014.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021993406
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.compositesb.2010.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038285327
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.compstruct.2010.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016075702
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.engstruct.2007.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016783676
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.jcsr.2003.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029246074
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.jcsr.2004.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046012603
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.jcsr.2006.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028326956
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.jcsr.2010.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047489119
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jcsr.2014.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043893142
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/s0008-8846(00)00345-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035678346
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0141-0296(03)00004-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037704606
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0143-974x(02)00076-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000486983
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0143-974x(03)00102-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018706676
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1061/(asce)0733-9445(2000)126:11(1295) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057599671
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1061/(asce)0733-9445(2003)129:4(554) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057600396
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1061/(asce)0733-9445(2004)130:2(180) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057600583
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1061/(asce)1090-0268(2006)10:2(125) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057620663
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1121/1.1480419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062266950
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1139/l98-009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008256350
137 rdf:type schema:CreativeWork
138 https://doi.org/10.14359/7525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067281211
139 rdf:type schema:CreativeWork
140 https://doi.org/10.14359/7575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067281260
141 rdf:type schema:CreativeWork
142 https://doi.org/10.14359/777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067281464
143 rdf:type schema:CreativeWork
144 https://doi.org/10.4018/978-1-59140-902-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096031637
145 rdf:type schema:CreativeWork
146 https://www.grid.ac/institutes/grid.412475.1 schema:alternateName Semnan University
147 schema:name Faculty of Civil Engineering, Semnan University, Semnan, Iran
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...