Effects of Width Ratios and Deviation Angles on the Mean Velocity in Inlet Channels Using Numerical Modeling and Artificial Neural ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03

AUTHORS

Sohrab Karimi, Hossein Bonakdari, Hojat Karami, Azadeh Gholami, Amir Hossein Zaji

ABSTRACT

Dividing open channels are varied types of open channel structures used to provide water for irrigation channels, agriculture and wastewater networks. In the present study, artificial neural network (ANN) and computational fluid dynamic models are used to calculate the mean velocity in different dividing angles within branch channels. First, the ANSYS-CFX model is used to simulate the flow pattern within the branch at a 90° angle. Results of the CFX model correspond fairly well to the results of the experimental model with a mean absolute percentage error (MAPE) of 5 %. After verification, two CFX models are generated in 30° and 60° angles in different width ratios of 0.6, 0.8, 1, 1.2, and 1.4, and the mean velocities are obtained by a flowmeter. The ANN model is then trained and tested by a set of experimental and CFX data. The ANN model presented an acceptable level of accuracy in predicting the dividing open channel mean flow velocity with a mean value R2 of 0.93. A comparison of the results indicated that the ANN model with 1.8 % MAPE performs better under 0.8 m width ratio. The MAPE within the 0.8 width is equivalent to the ratios 1.58, 1.87, and 2.04 % in 30°, 60°, and 90° deviation angles, respectively, and therefore the model performs better at the 30° angle. More... »

PAGES

149-161

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40999-016-0075-5

DOI

http://dx.doi.org/10.1007/s40999-016-0075-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019678839


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Semnan University", 
          "id": "https://www.grid.ac/institutes/grid.412475.1", 
          "name": [
            "Department of Civil Engineering, Semnan University, Semnan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karimi", 
        "givenName": "Sohrab", 
        "id": "sg:person.015156223731.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015156223731.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Razi University", 
          "id": "https://www.grid.ac/institutes/grid.412668.f", 
          "name": [
            "Department of Civil Engineering, Razi University, Kermanshah, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonakdari", 
        "givenName": "Hossein", 
        "id": "sg:person.011510703626.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011510703626.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semnan University", 
          "id": "https://www.grid.ac/institutes/grid.412475.1", 
          "name": [
            "Department of Civil Engineering, Semnan University, Semnan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karami", 
        "givenName": "Hojat", 
        "id": "sg:person.012371250011.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012371250011.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Razi University", 
          "id": "https://www.grid.ac/institutes/grid.412668.f", 
          "name": [
            "Department of Civil Engineering, Razi University, Kermanshah, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gholami", 
        "givenName": "Azadeh", 
        "id": "sg:person.015327322615.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015327322615.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Razi University", 
          "id": "https://www.grid.ac/institutes/grid.412668.f", 
          "name": [
            "Department of Civil Engineering, Razi University, Kermanshah, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaji", 
        "givenName": "Amir Hossein", 
        "id": "sg:person.07722420033.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07722420033.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0045-7930(95)00030-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013975411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.09.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015641776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00221689609498464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015876545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0273-1223(96)00154-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016788903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/19942060.2011.11015380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016849870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2012.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028358256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7930(94)90045-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028837683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7930(94)90045-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028837683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.flowmeasinst.2008.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031705736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02626669809492102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031739687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.flowmeasinst.2011.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036445848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agwat.2010.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037715736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-05549-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042155334", 
          "https://doi.org/10.1007/978-3-319-05549-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-05549-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042155334", 
          "https://doi.org/10.1007/978-3-319-05549-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(74)90029-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046860033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(74)90029-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046860033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1052484604", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56026-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052484604", 
          "https://doi.org/10.1007/978-3-642-56026-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56026-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052484604", 
          "https://doi.org/10.1007/978-3-642-56026-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(1987)113:4(539)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057589183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(1987)113:4(543)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057589184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(1992)118:4(634)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057590032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(1993)119:11(1223)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057590159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(1998)124:1(92)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057590940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(1999)125:2(126)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057591175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(2002)128:7(716)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057591839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(2007)133:10(1135)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057592630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12944/cwe.10.special-issue1.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064758696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/nh.2008.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069135314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.2012.319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069145514"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03", 
    "datePublishedReg": "2017-03-01", 
    "description": "Dividing open channels are varied types of open channel structures used to provide water for irrigation channels, agriculture and wastewater networks. In the present study, artificial neural network (ANN) and computational fluid dynamic models are used to calculate the mean velocity in different dividing angles within branch channels. First, the ANSYS-CFX model is used to simulate the flow pattern within the branch at a 90\u00b0 angle. Results of the CFX model correspond fairly well to the results of the experimental model with a mean absolute percentage error (MAPE) of 5 %. After verification, two CFX models are generated in 30\u00b0 and 60\u00b0 angles in different width ratios of 0.6, 0.8, 1, 1.2, and 1.4, and the mean velocities are obtained by a flowmeter. The ANN model is then trained and tested by a set of experimental and CFX data. The ANN model presented an acceptable level of accuracy in predicting the dividing open channel mean flow velocity with a mean value R2 of 0.93. A comparison of the results indicated that the ANN model with 1.8 % MAPE performs better under 0.8 m width ratio. The MAPE within the 0.8 width is equivalent to the ratios 1.58, 1.87, and 2.04 % in 30\u00b0, 60\u00b0, and 90\u00b0 deviation angles, respectively, and therefore the model performs better at the 30\u00b0 angle.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40999-016-0075-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1151599", 
        "issn": [
          "1735-0522", 
          "2383-3874"
        ], 
        "name": "International Journal of Civil Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Effects of Width Ratios and Deviation Angles on the Mean Velocity in Inlet Channels Using Numerical Modeling and Artificial Neural Network Modeling", 
    "pagination": "149-161", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5dc2c16266c343370601c3ca2d938e693b0a386d7b4ddc78fc14c093242d55e6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40999-016-0075-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019678839"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40999-016-0075-5", 
      "https://app.dimensions.ai/details/publication/pub.1019678839"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70032_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40999-016-0075-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40999-016-0075-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40999-016-0075-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40999-016-0075-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40999-016-0075-5'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40999-016-0075-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nba7e5b5ffcb54beab121ca90da1fb954
4 schema:citation sg:pub.10.1007/978-3-319-05549-7
5 sg:pub.10.1007/978-3-642-56026-2
6 https://app.dimensions.ai/details/publication/pub.1052484604
7 https://doi.org/10.1016/0045-7825(74)90029-2
8 https://doi.org/10.1016/0045-7930(94)90045-0
9 https://doi.org/10.1016/0045-7930(95)00030-5
10 https://doi.org/10.1016/0273-1223(96)00154-0
11 https://doi.org/10.1016/j.agwat.2010.12.012
12 https://doi.org/10.1016/j.eswa.2011.09.035
13 https://doi.org/10.1016/j.flowmeasinst.2008.01.001
14 https://doi.org/10.1016/j.flowmeasinst.2011.03.001
15 https://doi.org/10.1016/j.jhydrol.2012.01.010
16 https://doi.org/10.1061/(asce)0733-9429(1987)113:4(539)
17 https://doi.org/10.1061/(asce)0733-9429(1987)113:4(543)
18 https://doi.org/10.1061/(asce)0733-9429(1992)118:4(634)
19 https://doi.org/10.1061/(asce)0733-9429(1993)119:11(1223)
20 https://doi.org/10.1061/(asce)0733-9429(1998)124:1(92)
21 https://doi.org/10.1061/(asce)0733-9429(1999)125:2(126)
22 https://doi.org/10.1061/(asce)0733-9429(2002)128:7(716)
23 https://doi.org/10.1061/(asce)0733-9429(2007)133:10(1135)
24 https://doi.org/10.1080/00221689609498464
25 https://doi.org/10.1080/02626669809492102
26 https://doi.org/10.1080/19942060.2011.11015380
27 https://doi.org/10.12944/cwe.10.special-issue1.16
28 https://doi.org/10.2166/nh.2008.026
29 https://doi.org/10.2166/wst.2012.319
30 schema:datePublished 2017-03
31 schema:datePublishedReg 2017-03-01
32 schema:description Dividing open channels are varied types of open channel structures used to provide water for irrigation channels, agriculture and wastewater networks. In the present study, artificial neural network (ANN) and computational fluid dynamic models are used to calculate the mean velocity in different dividing angles within branch channels. First, the ANSYS-CFX model is used to simulate the flow pattern within the branch at a 90° angle. Results of the CFX model correspond fairly well to the results of the experimental model with a mean absolute percentage error (MAPE) of 5 %. After verification, two CFX models are generated in 30° and 60° angles in different width ratios of 0.6, 0.8, 1, 1.2, and 1.4, and the mean velocities are obtained by a flowmeter. The ANN model is then trained and tested by a set of experimental and CFX data. The ANN model presented an acceptable level of accuracy in predicting the dividing open channel mean flow velocity with a mean value R2 of 0.93. A comparison of the results indicated that the ANN model with 1.8 % MAPE performs better under 0.8 m width ratio. The MAPE within the 0.8 width is equivalent to the ratios 1.58, 1.87, and 2.04 % in 30°, 60°, and 90° deviation angles, respectively, and therefore the model performs better at the 30° angle.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N26ddbf7168dd403a8e7fd9e4cb59d9c9
37 Na67f700aa7504d7fb6c2bd92831ce34a
38 sg:journal.1151599
39 schema:name Effects of Width Ratios and Deviation Angles on the Mean Velocity in Inlet Channels Using Numerical Modeling and Artificial Neural Network Modeling
40 schema:pagination 149-161
41 schema:productId N0a3ce0980f54431ba64292d0b8b2555c
42 N71a4f9cf6e1e45a8874bacb8608815a5
43 N74d3e6d840b8418eb082fccc3cd9cf60
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019678839
45 https://doi.org/10.1007/s40999-016-0075-5
46 schema:sdDatePublished 2019-04-11T12:37
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N35a6bd2b6c034c79bca17a9f45201a12
49 schema:url https://link.springer.com/10.1007%2Fs40999-016-0075-5
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0a3ce0980f54431ba64292d0b8b2555c schema:name doi
54 schema:value 10.1007/s40999-016-0075-5
55 rdf:type schema:PropertyValue
56 N26ddbf7168dd403a8e7fd9e4cb59d9c9 schema:issueNumber 2
57 rdf:type schema:PublicationIssue
58 N2f48a89cf4f7408fadf3d6ded27161a3 rdf:first sg:person.015327322615.12
59 rdf:rest N83b567c7804547c0a944f45fb1c4d106
60 N35a6bd2b6c034c79bca17a9f45201a12 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N71a4f9cf6e1e45a8874bacb8608815a5 schema:name dimensions_id
63 schema:value pub.1019678839
64 rdf:type schema:PropertyValue
65 N74d3e6d840b8418eb082fccc3cd9cf60 schema:name readcube_id
66 schema:value 5dc2c16266c343370601c3ca2d938e693b0a386d7b4ddc78fc14c093242d55e6
67 rdf:type schema:PropertyValue
68 N83b567c7804547c0a944f45fb1c4d106 rdf:first sg:person.07722420033.40
69 rdf:rest rdf:nil
70 Na67f700aa7504d7fb6c2bd92831ce34a schema:volumeNumber 15
71 rdf:type schema:PublicationVolume
72 Nba7e5b5ffcb54beab121ca90da1fb954 rdf:first sg:person.015156223731.16
73 rdf:rest Ne7fe2208ff99425fa90c35e4faa7ef43
74 Ne7fe2208ff99425fa90c35e4faa7ef43 rdf:first sg:person.011510703626.55
75 rdf:rest Ned51b658be824f5c879ea3e2e8aa2e22
76 Ned51b658be824f5c879ea3e2e8aa2e22 rdf:first sg:person.012371250011.47
77 rdf:rest N2f48a89cf4f7408fadf3d6ded27161a3
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
82 schema:name Artificial Intelligence and Image Processing
83 rdf:type schema:DefinedTerm
84 sg:journal.1151599 schema:issn 1735-0522
85 2383-3874
86 schema:name International Journal of Civil Engineering
87 rdf:type schema:Periodical
88 sg:person.011510703626.55 schema:affiliation https://www.grid.ac/institutes/grid.412668.f
89 schema:familyName Bonakdari
90 schema:givenName Hossein
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011510703626.55
92 rdf:type schema:Person
93 sg:person.012371250011.47 schema:affiliation https://www.grid.ac/institutes/grid.412475.1
94 schema:familyName Karami
95 schema:givenName Hojat
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012371250011.47
97 rdf:type schema:Person
98 sg:person.015156223731.16 schema:affiliation https://www.grid.ac/institutes/grid.412475.1
99 schema:familyName Karimi
100 schema:givenName Sohrab
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015156223731.16
102 rdf:type schema:Person
103 sg:person.015327322615.12 schema:affiliation https://www.grid.ac/institutes/grid.412668.f
104 schema:familyName Gholami
105 schema:givenName Azadeh
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015327322615.12
107 rdf:type schema:Person
108 sg:person.07722420033.40 schema:affiliation https://www.grid.ac/institutes/grid.412668.f
109 schema:familyName Zaji
110 schema:givenName Amir Hossein
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07722420033.40
112 rdf:type schema:Person
113 sg:pub.10.1007/978-3-319-05549-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042155334
114 https://doi.org/10.1007/978-3-319-05549-7
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-3-642-56026-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052484604
117 https://doi.org/10.1007/978-3-642-56026-2
118 rdf:type schema:CreativeWork
119 https://app.dimensions.ai/details/publication/pub.1052484604 schema:CreativeWork
120 https://doi.org/10.1016/0045-7825(74)90029-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046860033
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0045-7930(94)90045-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028837683
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0045-7930(95)00030-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013975411
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0273-1223(96)00154-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016788903
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.agwat.2010.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037715736
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.eswa.2011.09.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015641776
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.flowmeasinst.2008.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031705736
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.flowmeasinst.2011.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036445848
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jhydrol.2012.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028358256
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1061/(asce)0733-9429(1987)113:4(539) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057589183
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1061/(asce)0733-9429(1987)113:4(543) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057589184
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1061/(asce)0733-9429(1992)118:4(634) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057590032
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1061/(asce)0733-9429(1993)119:11(1223) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057590159
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1061/(asce)0733-9429(1998)124:1(92) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057590940
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1061/(asce)0733-9429(1999)125:2(126) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057591175
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1061/(asce)0733-9429(2002)128:7(716) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057591839
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1061/(asce)0733-9429(2007)133:10(1135) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057592630
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1080/00221689609498464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015876545
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1080/02626669809492102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031739687
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1080/19942060.2011.11015380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016849870
159 rdf:type schema:CreativeWork
160 https://doi.org/10.12944/cwe.10.special-issue1.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064758696
161 rdf:type schema:CreativeWork
162 https://doi.org/10.2166/nh.2008.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069135314
163 rdf:type schema:CreativeWork
164 https://doi.org/10.2166/wst.2012.319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069145514
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.412475.1 schema:alternateName Semnan University
167 schema:name Department of Civil Engineering, Semnan University, Semnan, Iran
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.412668.f schema:alternateName Razi University
170 schema:name Department of Civil Engineering, Razi University, Kermanshah, Iran
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...