Application of Differential Evolution Algorithm and Its Variants for Solving Energy Storage Technologies Integrated Generation Expansion Planning View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-11

AUTHORS

A. Bhuvanesh, S. T. Jaya Christa, S. Kannan, M. Karuppasamy Pandiyan, K. Gangatharan

ABSTRACT

Generation expansion planning (GEP) should consider the integration of renewable energy sources (RES) and energy storage technologies (EST), along with conventional generating units so as to overcome the challenges such as uncertainties in future load growth forecasting, restrictions on investment for power generation, the type and availability of source for the generating units, environmental policy based on emission constraints and the reliability level to guarantee a continuous power. The proposed coordinated GEP-EST planning aims at minimizing the overall generation cost and environmental pollution, and at the same time, it considers large-scale ESTs. In this paper, the promising intelligent techniques such as differential evolution and self-adaptive differential evolution algorithms are applied to solve GEP-EST problem, where the power generating system of Tamil Nadu, an Indian state is taken as study system. Simulation results show that the integration of ESTs significantly reduces the overall cost and the pollutant emission. More... »

PAGES

1-14

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40998-019-00190-x

DOI

http://dx.doi.org/10.1007/s40998-019-00190-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112676621


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Anna University, Chennai", 
          "id": "https://www.grid.ac/institutes/grid.252262.3", 
          "name": [
            "Department of Electrical and Electronics Engineering, PSN College of Engineering and Technology, Tirunelveli, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhuvanesh", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anna University, Chennai", 
          "id": "https://www.grid.ac/institutes/grid.252262.3", 
          "name": [
            "Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jaya Christa", 
        "givenName": "S. T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electrical and Electronics Engineering, Ramco Institute of Technology, Rajapalayam, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kannan", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kalasalingam University", 
          "id": "https://www.grid.ac/institutes/grid.444541.4", 
          "name": [
            "Department of Electrical and Electronics Engineering, Kalasalingam University, Krishnankoil, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karuppasamy Pandiyan", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anna University, Chennai", 
          "id": "https://www.grid.ac/institutes/grid.252262.3", 
          "name": [
            "Department of Mechanical Engineering, PSN College of Engineering and Technology, Tirunelveli, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gangatharan", 
        "givenName": "K.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.renene.2015.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003960459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/etep.1929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007074564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008202821328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012950914", 
          "https://doi.org/10.1023/a:1008202821328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2015.12.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013796424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5370/jeet.2013.8.4.686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019052162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.eg.15.110190.001351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028855965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.eg.15.110190.001515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036422174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epsr.2005.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047887320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.eg.15.110190.001425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050615192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2016.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051542178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-0615(97)00070-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051891527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/59.627882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061194236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/59.744547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061194596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/59.871713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061194962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2008.927706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrs.2002.800982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061776098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrs.2002.801036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061776105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrs.2004.840451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061776708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrs.2011.2107753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061778287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrs.2014.2364257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061779751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsg.2013.2281828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061790005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tste.2015.2497336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061806946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2006.1688285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094732053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccpct.2014.7055025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095320498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sustech.2013.6617290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095677747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jifs-169681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104990789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.futures.2018.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105443592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/etep.2708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106908765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/etep.2708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106908765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/etep.2708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106908765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccic.2017.8524458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109825080"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-11", 
    "datePublishedReg": "2019-03-11", 
    "description": "Generation expansion planning (GEP) should consider the integration of renewable energy sources (RES) and energy storage technologies (EST), along with conventional generating units so as to overcome the challenges such as uncertainties in future load growth forecasting, restrictions on investment for power generation, the type and availability of source for the generating units, environmental policy based on emission constraints and the reliability level to guarantee a continuous power. The proposed coordinated GEP-EST planning aims at minimizing the overall generation cost and environmental pollution, and at the same time, it considers large-scale ESTs. In this paper, the promising intelligent techniques such as differential evolution and self-adaptive differential evolution algorithms are applied to solve GEP-EST problem, where the power generating system of Tamil Nadu, an Indian state is taken as study system. Simulation results show that the integration of ESTs significantly reduces the overall cost and the pollutant emission. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40998-019-00190-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1283955", 
        "issn": [
          "2228-6179", 
          "2364-1827"
        ], 
        "name": "Iranian Journal of Science and Technology, Transactions of Electrical Engineering", 
        "type": "Periodical"
      }
    ], 
    "name": "Application of Differential Evolution Algorithm and Its Variants for Solving Energy Storage Technologies Integrated Generation Expansion Planning", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7f7888aa05d9ba82e11549cc3efb81e641d841cb1e6c30a9ef30d215dc7ccb63"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40998-019-00190-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112676621"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40998-019-00190-x", 
      "https://app.dimensions.ai/details/publication/pub.1112676621"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_53016_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40998-019-00190-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40998-019-00190-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40998-019-00190-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40998-019-00190-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40998-019-00190-x'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      53 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40998-019-00190-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N558c5d86021d4f319a3bab64eb0256e3
4 schema:citation sg:pub.10.1023/a:1008202821328
5 https://doi.org/10.1002/etep.1929
6 https://doi.org/10.1002/etep.2708
7 https://doi.org/10.1016/j.epsr.2005.06.005
8 https://doi.org/10.1016/j.futures.2018.07.002
9 https://doi.org/10.1016/j.renene.2015.07.026
10 https://doi.org/10.1016/j.renene.2016.06.020
11 https://doi.org/10.1016/j.rser.2015.12.126
12 https://doi.org/10.1016/s0142-0615(97)00070-7
13 https://doi.org/10.1109/59.627882
14 https://doi.org/10.1109/59.744547
15 https://doi.org/10.1109/59.871713
16 https://doi.org/10.1109/cec.2006.1688285
17 https://doi.org/10.1109/iccic.2017.8524458
18 https://doi.org/10.1109/iccpct.2014.7055025
19 https://doi.org/10.1109/sustech.2013.6617290
20 https://doi.org/10.1109/tevc.2008.927706
21 https://doi.org/10.1109/tpwrs.2002.800982
22 https://doi.org/10.1109/tpwrs.2002.801036
23 https://doi.org/10.1109/tpwrs.2004.840451
24 https://doi.org/10.1109/tpwrs.2011.2107753
25 https://doi.org/10.1109/tpwrs.2014.2364257
26 https://doi.org/10.1109/tsg.2013.2281828
27 https://doi.org/10.1109/tste.2015.2497336
28 https://doi.org/10.1146/annurev.eg.15.110190.001351
29 https://doi.org/10.1146/annurev.eg.15.110190.001425
30 https://doi.org/10.1146/annurev.eg.15.110190.001515
31 https://doi.org/10.3233/jifs-169681
32 https://doi.org/10.5370/jeet.2013.8.4.686
33 schema:datePublished 2019-03-11
34 schema:datePublishedReg 2019-03-11
35 schema:description Generation expansion planning (GEP) should consider the integration of renewable energy sources (RES) and energy storage technologies (EST), along with conventional generating units so as to overcome the challenges such as uncertainties in future load growth forecasting, restrictions on investment for power generation, the type and availability of source for the generating units, environmental policy based on emission constraints and the reliability level to guarantee a continuous power. The proposed coordinated GEP-EST planning aims at minimizing the overall generation cost and environmental pollution, and at the same time, it considers large-scale ESTs. In this paper, the promising intelligent techniques such as differential evolution and self-adaptive differential evolution algorithms are applied to solve GEP-EST problem, where the power generating system of Tamil Nadu, an Indian state is taken as study system. Simulation results show that the integration of ESTs significantly reduces the overall cost and the pollutant emission.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf sg:journal.1283955
40 schema:name Application of Differential Evolution Algorithm and Its Variants for Solving Energy Storage Technologies Integrated Generation Expansion Planning
41 schema:pagination 1-14
42 schema:productId N4dac6b8d20234a8ab4ae4b2abdd6f062
43 Nd1e8e7c14cd74ba389b23d42fb70871b
44 Nfaab841eef7743df857c3dbada4f7055
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112676621
46 https://doi.org/10.1007/s40998-019-00190-x
47 schema:sdDatePublished 2019-04-11T11:24
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nb42e1c2dd4ba4f8eac76c489533ef879
50 schema:url https://link.springer.com/10.1007%2Fs40998-019-00190-x
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N15add4fe03c4495595133a6950c254d8 schema:affiliation https://www.grid.ac/institutes/grid.252262.3
55 schema:familyName Gangatharan
56 schema:givenName K.
57 rdf:type schema:Person
58 N4990695a477042e799cc8eeaf0963c6d schema:affiliation Na718e693657a47608931a53221308497
59 schema:familyName Kannan
60 schema:givenName S.
61 rdf:type schema:Person
62 N4dac6b8d20234a8ab4ae4b2abdd6f062 schema:name doi
63 schema:value 10.1007/s40998-019-00190-x
64 rdf:type schema:PropertyValue
65 N542e4599c4134847bf8d539c3e294014 rdf:first N15add4fe03c4495595133a6950c254d8
66 rdf:rest rdf:nil
67 N558c5d86021d4f319a3bab64eb0256e3 rdf:first N5691b8cd0a5f4d61854aa493cf728c0f
68 rdf:rest Nb0cd4d39502942dc9560ed57fbd5f230
69 N55c34450602c4cd682e79d5fdbc89c7b rdf:first N4990695a477042e799cc8eeaf0963c6d
70 rdf:rest N7583e806c6524d8f98ae28484f36c134
71 N5691b8cd0a5f4d61854aa493cf728c0f schema:affiliation https://www.grid.ac/institutes/grid.252262.3
72 schema:familyName Bhuvanesh
73 schema:givenName A.
74 rdf:type schema:Person
75 N7583e806c6524d8f98ae28484f36c134 rdf:first N7993e3c577b84cc68e8b64d62f391329
76 rdf:rest N542e4599c4134847bf8d539c3e294014
77 N7993e3c577b84cc68e8b64d62f391329 schema:affiliation https://www.grid.ac/institutes/grid.444541.4
78 schema:familyName Karuppasamy Pandiyan
79 schema:givenName M.
80 rdf:type schema:Person
81 Na718e693657a47608931a53221308497 schema:name Department of Electrical and Electronics Engineering, Ramco Institute of Technology, Rajapalayam, Tamilnadu, India
82 rdf:type schema:Organization
83 Nb0cd4d39502942dc9560ed57fbd5f230 rdf:first Nc7de012bec754ed297be0416c4d3ea16
84 rdf:rest N55c34450602c4cd682e79d5fdbc89c7b
85 Nb42e1c2dd4ba4f8eac76c489533ef879 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nc7de012bec754ed297be0416c4d3ea16 schema:affiliation https://www.grid.ac/institutes/grid.252262.3
88 schema:familyName Jaya Christa
89 schema:givenName S. T.
90 rdf:type schema:Person
91 Nd1e8e7c14cd74ba389b23d42fb70871b schema:name dimensions_id
92 schema:value pub.1112676621
93 rdf:type schema:PropertyValue
94 Nfaab841eef7743df857c3dbada4f7055 schema:name readcube_id
95 schema:value 7f7888aa05d9ba82e11549cc3efb81e641d841cb1e6c30a9ef30d215dc7ccb63
96 rdf:type schema:PropertyValue
97 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
98 schema:name Information and Computing Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
101 schema:name Artificial Intelligence and Image Processing
102 rdf:type schema:DefinedTerm
103 sg:journal.1283955 schema:issn 2228-6179
104 2364-1827
105 schema:name Iranian Journal of Science and Technology, Transactions of Electrical Engineering
106 rdf:type schema:Periodical
107 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
108 https://doi.org/10.1023/a:1008202821328
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/etep.1929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007074564
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/etep.2708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106908765
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.epsr.2005.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047887320
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.futures.2018.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105443592
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.renene.2015.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003960459
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.renene.2016.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051542178
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.rser.2015.12.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013796424
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0142-0615(97)00070-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051891527
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/59.627882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061194236
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/59.744547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061194596
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/59.871713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061194962
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/cec.2006.1688285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094732053
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/iccic.2017.8524458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109825080
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/iccpct.2014.7055025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095320498
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/sustech.2013.6617290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095677747
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/tevc.2008.927706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604895
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/tpwrs.2002.800982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061776098
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tpwrs.2002.801036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061776105
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tpwrs.2004.840451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061776708
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tpwrs.2011.2107753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061778287
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tpwrs.2014.2364257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061779751
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tsg.2013.2281828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061790005
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/tste.2015.2497336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061806946
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1146/annurev.eg.15.110190.001351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028855965
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1146/annurev.eg.15.110190.001425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050615192
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1146/annurev.eg.15.110190.001515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036422174
161 rdf:type schema:CreativeWork
162 https://doi.org/10.3233/jifs-169681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104990789
163 rdf:type schema:CreativeWork
164 https://doi.org/10.5370/jeet.2013.8.4.686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019052162
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.252262.3 schema:alternateName Anna University, Chennai
167 schema:name Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
168 Department of Electrical and Electronics Engineering, PSN College of Engineering and Technology, Tirunelveli, Tamil Nadu, India
169 Department of Mechanical Engineering, PSN College of Engineering and Technology, Tirunelveli, Tamil Nadu, India
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.444541.4 schema:alternateName Kalasalingam University
172 schema:name Department of Electrical and Electronics Engineering, Kalasalingam University, Krishnankoil, Tamilnadu, India
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...