Enhanced Modified Decision-Based Unsymmetric Trimmed Adaptive Neighborhood Winsorized Mean Filter for Removing 1–99% Levels of Salt-and-Pepper Noise View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-27

AUTHORS

Navdeep Goel, Pulkit Aggarwal

ABSTRACT

In this paper, a novel and effective algorithm for removing 1–99% levels of salt-and-pepper noise is proposed. The proposed algorithm comprises a two-phase scheme. The first phase involves a combination of enhanced modified decision-based unsymmetric trimmed mean filter (EMDBUTMF) and decision-based unsymmetrical trimmed modified winsorized mean filter (DBUTWMF), and the second phase is employed after the first phase to replace the left over noisy pixels. The proposed algorithm is the fusion of the benefits of EMDBUTMF, DBUTWMF and decision-based diagonal neighborhood pixel algorithm and shows better results than the decision-based algorithm, modified decision-based unsymmetric trimmed median filter (MDBUTMF), EMDBUTMF, Modified decision-based unsymmetrical trimmed median filter with trimmed global mean (MDBUTMF_GM), DBUTWMF. The proposed algorithm is examined against 1–99% levels of salt-and-pepper noise for several grayscale bitmap images, and it gives better peak-signal-to-noise ratio, image enhancement factor and Structural Similarity Index Measures values for high noise densities. More... »

PAGES

1-10

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40998-019-00186-7

DOI

http://dx.doi.org/10.1007/s40998-019-00186-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112439075


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Electronics and Communication Engineering Section, Yadavindra College of Engineering, 151302, Talwandi Sabo, Punjab, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goel", 
        "givenName": "Navdeep", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Electronics and Communication Engineering Section, Yadavindra College of Engineering, 151302, Talwandi Sabo, Punjab, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aggarwal", 
        "givenName": "Pulkit", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.aeue.2016.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007613867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2015.06.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020334024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2015.04.174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023844232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1155/2010/690218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024924881", 
          "https://doi.org/10.1155/2010/690218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aeue.2016.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028004046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aeue.2015.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034123602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.370679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2006.884018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061376872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2011.2122333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061377915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1979.1163188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061518498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcom.1984.1096099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061553904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2003.819861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.852196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.852196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.871129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5120/4874-7303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072604838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-ipr.2016.0515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084138027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40998-017-0021-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090337994", 
          "https://doi.org/10.1007/s40998-017-0021-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40998-017-0021-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090337994", 
          "https://doi.org/10.1007/s40998-017-0021-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccms.2010.310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094721971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/casp.2016.7746187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094833072"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-27", 
    "datePublishedReg": "2019-02-27", 
    "description": "In this paper, a novel and effective algorithm for removing 1\u201399% levels of salt-and-pepper noise is proposed. The proposed algorithm comprises a two-phase scheme. The first phase involves a combination of enhanced modified decision-based unsymmetric trimmed mean filter (EMDBUTMF) and decision-based unsymmetrical trimmed modified winsorized mean filter (DBUTWMF), and the second phase is employed after the first phase to replace the left over noisy pixels. The proposed algorithm is the fusion of the benefits of EMDBUTMF, DBUTWMF and decision-based diagonal neighborhood pixel algorithm and shows better results than the decision-based algorithm, modified decision-based unsymmetric trimmed median filter (MDBUTMF), EMDBUTMF, Modified decision-based unsymmetrical trimmed median filter with trimmed global mean (MDBUTMF_GM), DBUTWMF. The proposed algorithm is examined against 1\u201399% levels of salt-and-pepper noise for several grayscale bitmap images, and it gives better peak-signal-to-noise ratio, image enhancement factor and Structural Similarity Index Measures values for high noise densities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40998-019-00186-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1283955", 
        "issn": [
          "2228-6179", 
          "2364-1827"
        ], 
        "name": "Iranian Journal of Science and Technology, Transactions of Electrical Engineering", 
        "type": "Periodical"
      }
    ], 
    "name": "Enhanced Modified Decision-Based Unsymmetric Trimmed Adaptive Neighborhood Winsorized Mean Filter for Removing 1\u201399% Levels of Salt-and-Pepper Noise", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a6706c54e27b594bd517af889b3deba9f09c33214f7d345cc0e8b38c02347d5a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40998-019-00186-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112439075"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40998-019-00186-7", 
      "https://app.dimensions.ai/details/publication/pub.1112439075"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54316_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40998-019-00186-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40998-019-00186-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40998-019-00186-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40998-019-00186-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40998-019-00186-7'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      43 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40998-019-00186-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N70568cc6720844d8a5cce1f25c3b580f
4 schema:citation sg:pub.10.1007/s40998-017-0021-9
5 sg:pub.10.1155/2010/690218
6 https://doi.org/10.1016/j.aeue.2015.09.007
7 https://doi.org/10.1016/j.aeue.2016.03.002
8 https://doi.org/10.1016/j.aeue.2016.04.018
9 https://doi.org/10.1016/j.procs.2015.04.174
10 https://doi.org/10.1016/j.procs.2015.06.069
11 https://doi.org/10.1049/iet-ipr.2016.0515
12 https://doi.org/10.1109/83.370679
13 https://doi.org/10.1109/casp.2016.7746187
14 https://doi.org/10.1109/iccms.2010.310
15 https://doi.org/10.1109/lsp.2006.884018
16 https://doi.org/10.1109/lsp.2011.2122333
17 https://doi.org/10.1109/tassp.1979.1163188
18 https://doi.org/10.1109/tcom.1984.1096099
19 https://doi.org/10.1109/tip.2003.819861
20 https://doi.org/10.1109/tip.2005.852196
21 https://doi.org/10.1109/tip.2005.871129
22 https://doi.org/10.5120/4874-7303
23 schema:datePublished 2019-02-27
24 schema:datePublishedReg 2019-02-27
25 schema:description In this paper, a novel and effective algorithm for removing 1–99% levels of salt-and-pepper noise is proposed. The proposed algorithm comprises a two-phase scheme. The first phase involves a combination of enhanced modified decision-based unsymmetric trimmed mean filter (EMDBUTMF) and decision-based unsymmetrical trimmed modified winsorized mean filter (DBUTWMF), and the second phase is employed after the first phase to replace the left over noisy pixels. The proposed algorithm is the fusion of the benefits of EMDBUTMF, DBUTWMF and decision-based diagonal neighborhood pixel algorithm and shows better results than the decision-based algorithm, modified decision-based unsymmetric trimmed median filter (MDBUTMF), EMDBUTMF, Modified decision-based unsymmetrical trimmed median filter with trimmed global mean (MDBUTMF_GM), DBUTWMF. The proposed algorithm is examined against 1–99% levels of salt-and-pepper noise for several grayscale bitmap images, and it gives better peak-signal-to-noise ratio, image enhancement factor and Structural Similarity Index Measures values for high noise densities.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf sg:journal.1283955
30 schema:name Enhanced Modified Decision-Based Unsymmetric Trimmed Adaptive Neighborhood Winsorized Mean Filter for Removing 1–99% Levels of Salt-and-Pepper Noise
31 schema:pagination 1-10
32 schema:productId N0ef7d10436a6454db8f09486bc112404
33 N3c09a8d01b144e94b2bc9b3ec94b724b
34 Nd1f9d45bfd5548ae87b06f9af3a31394
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112439075
36 https://doi.org/10.1007/s40998-019-00186-7
37 schema:sdDatePublished 2019-04-11T10:18
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N245fdea12d7f4647a8ef036644157d97
40 schema:url https://link.springer.com/10.1007%2Fs40998-019-00186-7
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N0ef7d10436a6454db8f09486bc112404 schema:name dimensions_id
45 schema:value pub.1112439075
46 rdf:type schema:PropertyValue
47 N245fdea12d7f4647a8ef036644157d97 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N3c09a8d01b144e94b2bc9b3ec94b724b schema:name doi
50 schema:value 10.1007/s40998-019-00186-7
51 rdf:type schema:PropertyValue
52 N70568cc6720844d8a5cce1f25c3b580f rdf:first Ne92b131581b141aca11618017adc098a
53 rdf:rest N9738616fe3c7482082d1f199495fbf3e
54 N9738616fe3c7482082d1f199495fbf3e rdf:first Nb5181fd1ce34435babb4ee29299681a7
55 rdf:rest rdf:nil
56 N9a93ba45cd634c128169e8dd7297c94c schema:name Electronics and Communication Engineering Section, Yadavindra College of Engineering, 151302, Talwandi Sabo, Punjab, India
57 rdf:type schema:Organization
58 Nb5181fd1ce34435babb4ee29299681a7 schema:affiliation N9a93ba45cd634c128169e8dd7297c94c
59 schema:familyName Aggarwal
60 schema:givenName Pulkit
61 rdf:type schema:Person
62 Nd1f9d45bfd5548ae87b06f9af3a31394 schema:name readcube_id
63 schema:value a6706c54e27b594bd517af889b3deba9f09c33214f7d345cc0e8b38c02347d5a
64 rdf:type schema:PropertyValue
65 Ne92b131581b141aca11618017adc098a schema:affiliation Nebd05a1be74f4665b0e8b81d5c0243c5
66 schema:familyName Goel
67 schema:givenName Navdeep
68 rdf:type schema:Person
69 Nebd05a1be74f4665b0e8b81d5c0243c5 schema:name Electronics and Communication Engineering Section, Yadavindra College of Engineering, 151302, Talwandi Sabo, Punjab, India
70 rdf:type schema:Organization
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
75 schema:name Artificial Intelligence and Image Processing
76 rdf:type schema:DefinedTerm
77 sg:journal.1283955 schema:issn 2228-6179
78 2364-1827
79 schema:name Iranian Journal of Science and Technology, Transactions of Electrical Engineering
80 rdf:type schema:Periodical
81 sg:pub.10.1007/s40998-017-0021-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090337994
82 https://doi.org/10.1007/s40998-017-0021-9
83 rdf:type schema:CreativeWork
84 sg:pub.10.1155/2010/690218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024924881
85 https://doi.org/10.1155/2010/690218
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.aeue.2015.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034123602
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.aeue.2016.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028004046
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.aeue.2016.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007613867
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.procs.2015.04.174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023844232
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.procs.2015.06.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020334024
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1049/iet-ipr.2016.0515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084138027
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/83.370679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239220
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/casp.2016.7746187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094833072
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/iccms.2010.310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094721971
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/lsp.2006.884018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061376872
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/lsp.2011.2122333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061377915
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/tassp.1979.1163188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061518498
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/tcom.1984.1096099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061553904
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/tip.2003.819861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640964
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/tip.2005.852196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641198
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/tip.2005.871129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641389
118 rdf:type schema:CreativeWork
119 https://doi.org/10.5120/4874-7303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072604838
120 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...