Enhanced Modified Decision-Based Unsymmetric Trimmed Adaptive Neighborhood Winsorized Mean Filter for Removing 1–99% Levels of Salt-and-Pepper Noise View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-27

AUTHORS

Navdeep Goel, Pulkit Aggarwal

ABSTRACT

In this paper, a novel and effective algorithm for removing 1–99% levels of salt-and-pepper noise is proposed. The proposed algorithm comprises a two-phase scheme. The first phase involves a combination of enhanced modified decision-based unsymmetric trimmed mean filter (EMDBUTMF) and decision-based unsymmetrical trimmed modified winsorized mean filter (DBUTWMF), and the second phase is employed after the first phase to replace the left over noisy pixels. The proposed algorithm is the fusion of the benefits of EMDBUTMF, DBUTWMF and decision-based diagonal neighborhood pixel algorithm and shows better results than the decision-based algorithm, modified decision-based unsymmetric trimmed median filter (MDBUTMF), EMDBUTMF, Modified decision-based unsymmetrical trimmed median filter with trimmed global mean (MDBUTMF_GM), DBUTWMF. The proposed algorithm is examined against 1–99% levels of salt-and-pepper noise for several grayscale bitmap images, and it gives better peak-signal-to-noise ratio, image enhancement factor and Structural Similarity Index Measures values for high noise densities. More... »

PAGES

1-10

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40998-019-00186-7

DOI

http://dx.doi.org/10.1007/s40998-019-00186-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112439075


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Electronics and Communication Engineering Section, Yadavindra College of Engineering, 151302, Talwandi Sabo, Punjab, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goel", 
        "givenName": "Navdeep", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Electronics and Communication Engineering Section, Yadavindra College of Engineering, 151302, Talwandi Sabo, Punjab, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aggarwal", 
        "givenName": "Pulkit", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.aeue.2016.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007613867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2015.06.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020334024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2015.04.174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023844232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1155/2010/690218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024924881", 
          "https://doi.org/10.1155/2010/690218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aeue.2016.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028004046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aeue.2015.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034123602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.370679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2006.884018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061376872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2011.2122333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061377915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1979.1163188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061518498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcom.1984.1096099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061553904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2003.819861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.852196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.852196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.871129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5120/4874-7303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072604838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-ipr.2016.0515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084138027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40998-017-0021-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090337994", 
          "https://doi.org/10.1007/s40998-017-0021-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40998-017-0021-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090337994", 
          "https://doi.org/10.1007/s40998-017-0021-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccms.2010.310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094721971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/casp.2016.7746187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094833072"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-27", 
    "datePublishedReg": "2019-02-27", 
    "description": "In this paper, a novel and effective algorithm for removing 1\u201399% levels of salt-and-pepper noise is proposed. The proposed algorithm comprises a two-phase scheme. The first phase involves a combination of enhanced modified decision-based unsymmetric trimmed mean filter (EMDBUTMF) and decision-based unsymmetrical trimmed modified winsorized mean filter (DBUTWMF), and the second phase is employed after the first phase to replace the left over noisy pixels. The proposed algorithm is the fusion of the benefits of EMDBUTMF, DBUTWMF and decision-based diagonal neighborhood pixel algorithm and shows better results than the decision-based algorithm, modified decision-based unsymmetric trimmed median filter (MDBUTMF), EMDBUTMF, Modified decision-based unsymmetrical trimmed median filter with trimmed global mean (MDBUTMF_GM), DBUTWMF. The proposed algorithm is examined against 1\u201399% levels of salt-and-pepper noise for several grayscale bitmap images, and it gives better peak-signal-to-noise ratio, image enhancement factor and Structural Similarity Index Measures values for high noise densities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40998-019-00186-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1283955", 
        "issn": [
          "2228-6179", 
          "2364-1827"
        ], 
        "name": "Iranian Journal of Science and Technology, Transactions of Electrical Engineering", 
        "type": "Periodical"
      }
    ], 
    "name": "Enhanced Modified Decision-Based Unsymmetric Trimmed Adaptive Neighborhood Winsorized Mean Filter for Removing 1\u201399% Levels of Salt-and-Pepper Noise", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a6706c54e27b594bd517af889b3deba9f09c33214f7d345cc0e8b38c02347d5a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40998-019-00186-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112439075"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40998-019-00186-7", 
      "https://app.dimensions.ai/details/publication/pub.1112439075"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54316_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40998-019-00186-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40998-019-00186-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40998-019-00186-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40998-019-00186-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40998-019-00186-7'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      43 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40998-019-00186-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd6579fafe9a64f629f6aa6d29f1546cb
4 schema:citation sg:pub.10.1007/s40998-017-0021-9
5 sg:pub.10.1155/2010/690218
6 https://doi.org/10.1016/j.aeue.2015.09.007
7 https://doi.org/10.1016/j.aeue.2016.03.002
8 https://doi.org/10.1016/j.aeue.2016.04.018
9 https://doi.org/10.1016/j.procs.2015.04.174
10 https://doi.org/10.1016/j.procs.2015.06.069
11 https://doi.org/10.1049/iet-ipr.2016.0515
12 https://doi.org/10.1109/83.370679
13 https://doi.org/10.1109/casp.2016.7746187
14 https://doi.org/10.1109/iccms.2010.310
15 https://doi.org/10.1109/lsp.2006.884018
16 https://doi.org/10.1109/lsp.2011.2122333
17 https://doi.org/10.1109/tassp.1979.1163188
18 https://doi.org/10.1109/tcom.1984.1096099
19 https://doi.org/10.1109/tip.2003.819861
20 https://doi.org/10.1109/tip.2005.852196
21 https://doi.org/10.1109/tip.2005.871129
22 https://doi.org/10.5120/4874-7303
23 schema:datePublished 2019-02-27
24 schema:datePublishedReg 2019-02-27
25 schema:description In this paper, a novel and effective algorithm for removing 1–99% levels of salt-and-pepper noise is proposed. The proposed algorithm comprises a two-phase scheme. The first phase involves a combination of enhanced modified decision-based unsymmetric trimmed mean filter (EMDBUTMF) and decision-based unsymmetrical trimmed modified winsorized mean filter (DBUTWMF), and the second phase is employed after the first phase to replace the left over noisy pixels. The proposed algorithm is the fusion of the benefits of EMDBUTMF, DBUTWMF and decision-based diagonal neighborhood pixel algorithm and shows better results than the decision-based algorithm, modified decision-based unsymmetric trimmed median filter (MDBUTMF), EMDBUTMF, Modified decision-based unsymmetrical trimmed median filter with trimmed global mean (MDBUTMF_GM), DBUTWMF. The proposed algorithm is examined against 1–99% levels of salt-and-pepper noise for several grayscale bitmap images, and it gives better peak-signal-to-noise ratio, image enhancement factor and Structural Similarity Index Measures values for high noise densities.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf sg:journal.1283955
30 schema:name Enhanced Modified Decision-Based Unsymmetric Trimmed Adaptive Neighborhood Winsorized Mean Filter for Removing 1–99% Levels of Salt-and-Pepper Noise
31 schema:pagination 1-10
32 schema:productId N7c42189d704c4a6c852696b8d6658fcd
33 N89d4f61e956d4c369abd75917c047943
34 Nc6b899f6959e4dcb9bf0a9aaaff0ace2
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112439075
36 https://doi.org/10.1007/s40998-019-00186-7
37 schema:sdDatePublished 2019-04-11T10:18
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Ned9f39ab0e2a41829f1cb07b1290c9a4
40 schema:url https://link.springer.com/10.1007%2Fs40998-019-00186-7
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N49be6630e4664d1fb70e75e18eed8d7e schema:affiliation N97e372bea9a441be81c38d0165de442b
45 schema:familyName Aggarwal
46 schema:givenName Pulkit
47 rdf:type schema:Person
48 N7906c43f623c4f25aa3cd2ce9a15abce schema:affiliation N7c2fc5202f4c43938b391e5a67722efc
49 schema:familyName Goel
50 schema:givenName Navdeep
51 rdf:type schema:Person
52 N7c2fc5202f4c43938b391e5a67722efc schema:name Electronics and Communication Engineering Section, Yadavindra College of Engineering, 151302, Talwandi Sabo, Punjab, India
53 rdf:type schema:Organization
54 N7c42189d704c4a6c852696b8d6658fcd schema:name dimensions_id
55 schema:value pub.1112439075
56 rdf:type schema:PropertyValue
57 N89d4f61e956d4c369abd75917c047943 schema:name doi
58 schema:value 10.1007/s40998-019-00186-7
59 rdf:type schema:PropertyValue
60 N97e372bea9a441be81c38d0165de442b schema:name Electronics and Communication Engineering Section, Yadavindra College of Engineering, 151302, Talwandi Sabo, Punjab, India
61 rdf:type schema:Organization
62 Nc6b899f6959e4dcb9bf0a9aaaff0ace2 schema:name readcube_id
63 schema:value a6706c54e27b594bd517af889b3deba9f09c33214f7d345cc0e8b38c02347d5a
64 rdf:type schema:PropertyValue
65 Nd6579fafe9a64f629f6aa6d29f1546cb rdf:first N7906c43f623c4f25aa3cd2ce9a15abce
66 rdf:rest Nfb2ec3967d9143618cf1ba66614ea8e0
67 Ned9f39ab0e2a41829f1cb07b1290c9a4 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nfb2ec3967d9143618cf1ba66614ea8e0 rdf:first N49be6630e4664d1fb70e75e18eed8d7e
70 rdf:rest rdf:nil
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
75 schema:name Artificial Intelligence and Image Processing
76 rdf:type schema:DefinedTerm
77 sg:journal.1283955 schema:issn 2228-6179
78 2364-1827
79 schema:name Iranian Journal of Science and Technology, Transactions of Electrical Engineering
80 rdf:type schema:Periodical
81 sg:pub.10.1007/s40998-017-0021-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090337994
82 https://doi.org/10.1007/s40998-017-0021-9
83 rdf:type schema:CreativeWork
84 sg:pub.10.1155/2010/690218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024924881
85 https://doi.org/10.1155/2010/690218
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.aeue.2015.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034123602
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.aeue.2016.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028004046
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.aeue.2016.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007613867
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.procs.2015.04.174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023844232
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.procs.2015.06.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020334024
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1049/iet-ipr.2016.0515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084138027
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/83.370679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239220
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/casp.2016.7746187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094833072
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/iccms.2010.310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094721971
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/lsp.2006.884018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061376872
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/lsp.2011.2122333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061377915
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/tassp.1979.1163188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061518498
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/tcom.1984.1096099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061553904
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/tip.2003.819861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640964
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/tip.2005.852196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641198
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/tip.2005.871129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641389
118 rdf:type schema:CreativeWork
119 https://doi.org/10.5120/4874-7303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072604838
120 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...