Event-Triggered Adaptive Integral Higher-Order Sliding Mode Control for Load Frequency Problems in Multi-area Power Systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Ark Dev, Mrinal Kanti Sarkar, Pankhuri Asthana, Daijiry Narzary

ABSTRACT

The study proposes a method to design continuous-time event-triggered adaptive integral higher-order sliding mode control for load frequency problems in multi-area power system under load disturbances and parameter uncertainties. Event-triggered strategy reduces the communication burden and lowers the control updating frequency while ensuring high-performance system stability. Event-triggered integral higher-order sliding mode control is used to attain need-based chattering-free control signal compared to event-triggered integral sliding mode control which assures its easy practical implementation. Adaptive estimation of switching gain is used with higher-order integral sliding mode control that eliminates the need of prior knowledge about the system uncertainties. Nonlinear uncertainties in power system like generation rate constraints (GRC) and governor deadband lead to load disturbance that results in deviation of frequency from its nominal value. Robustness of the controller is tested for plant considered with such nonlinearities. System performance without GRC is better; however, proposed controller still ensures finite time convergence of change in frequency under GRC and governor deadband. Proposed controller also guarantees finite time convergence of change in frequency under random varying load disturbances. We have also integrated renewable energy resources in the system and tried to handle relevant output power uncertainty in load frequency problem. More... »

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40998-018-0078-0

DOI

http://dx.doi.org/10.1007/s40998-018-0078-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105333651


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Electrical Engineering, National Institute of Technology Manipur, Imphal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dev", 
        "givenName": "Ark", 
        "id": "sg:person.07675325360.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07675325360.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electrical Engineering, National Institute of Technology Manipur, Imphal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sarkar", 
        "givenName": "Mrinal Kanti", 
        "id": "sg:person.010334205227.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010334205227.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electrical Engineering, National Institute of Technology Manipur, Imphal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asthana", 
        "givenName": "Pankhuri", 
        "id": "sg:person.011575377614.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011575377614.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electrical Engineering, National Institute of Technology Manipur, Imphal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narzary", 
        "givenName": "Daijiry", 
        "id": "sg:person.010250552014.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010250552014.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00207179.2016.1142617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001351044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1015831022", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-03448-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015831022", 
          "https://doi.org/10.1007/978-3-642-03448-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-03448-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015831022", 
          "https://doi.org/10.1007/978-3-642-03448-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conengprac.2007.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019309693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-7796(91)90060-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019347136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-7796(91)90060-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019347136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07313569508955618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021128194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15325000590474672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021341244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2010.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025515314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11768-013-1180-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030719741", 
          "https://doi.org/10.1007/s11768-013-1180-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13250-6_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030825984", 
          "https://doi.org/10.1007/978-3-642-13250-6_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13250-6_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030825984", 
          "https://doi.org/10.1007/978-3-642-13250-6_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207178408933155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033625489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-0615(99)00010-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037717423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15325000390112071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041851960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2011.0478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056823440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-cta:20041129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056847448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-gtd:19960452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056852625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-gtd:20050176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056853620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-gtd:20050176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056853620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/41.704892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061169375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/59.32469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061193145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/aieepas.1953.4498667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061252732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tec.2007.914309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061589341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2013.2279369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061626305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2015.2399394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061627128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpas.1970.292602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061746527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpas.1970.292603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061746528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrs.2013.2277131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061779166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrs.2013.2297432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061779361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsg.2015.2435258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061790609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conengprac.2017.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083803233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2017.2677357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084206188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/rasm.2015.7154648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093881639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iecon.2016.7794153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094579446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccece.2012.6334944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094916615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/acc.2016.7526701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095386060"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "The study proposes a method to design continuous-time event-triggered adaptive integral higher-order sliding mode control for load frequency problems in multi-area power system under load disturbances and parameter uncertainties. Event-triggered strategy reduces the communication burden and lowers the control updating frequency while ensuring high-performance system stability. Event-triggered integral higher-order sliding mode control is used to attain need-based chattering-free control signal compared to event-triggered integral sliding mode control which assures its easy practical implementation. Adaptive estimation of switching gain is used with higher-order integral sliding mode control that eliminates the need of prior knowledge about the system uncertainties. Nonlinear uncertainties in power system like generation rate constraints (GRC) and governor deadband lead to load disturbance that results in deviation of frequency from its nominal value. Robustness of the controller is tested for plant considered with such nonlinearities. System performance without GRC is better; however, proposed controller still ensures finite time convergence of change in frequency under GRC and governor deadband. Proposed controller also guarantees finite time convergence of change in frequency under random varying load disturbances. We have also integrated renewable energy resources in the system and tried to handle relevant output power uncertainty in load frequency problem.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40998-018-0078-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1283955", 
        "issn": [
          "2228-6179", 
          "2364-1827"
        ], 
        "name": "Iranian Journal of Science and Technology, Transactions of Electrical Engineering", 
        "type": "Periodical"
      }
    ], 
    "name": "Event-Triggered Adaptive Integral Higher-Order Sliding Mode Control for Load Frequency Problems in Multi-area Power Systems", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2661853b8a944b0a2d560108dfadbf47a12620f8afeeec5898a5ffd7edfa9a1f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40998-018-0078-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105333651"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40998-018-0078-0", 
      "https://app.dimensions.ai/details/publication/pub.1105333651"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s40998-018-0078-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40998-018-0078-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40998-018-0078-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40998-018-0078-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40998-018-0078-0'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      59 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40998-018-0078-0 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author Nc935ff51070a445486590b8c8e8c4746
4 schema:citation sg:pub.10.1007/978-3-642-03448-0
5 sg:pub.10.1007/978-3-642-13250-6_15
6 sg:pub.10.1007/s11768-013-1180-5
7 https://app.dimensions.ai/details/publication/pub.1015831022
8 https://doi.org/10.1016/0378-7796(91)90060-z
9 https://doi.org/10.1016/j.cnsns.2010.12.020
10 https://doi.org/10.1016/j.conengprac.2007.12.003
11 https://doi.org/10.1016/j.conengprac.2017.02.001
12 https://doi.org/10.1016/s0142-0615(99)00010-1
13 https://doi.org/10.1049/iet-cta.2011.0478
14 https://doi.org/10.1049/ip-cta:20041129
15 https://doi.org/10.1049/ip-gtd:19960452
16 https://doi.org/10.1049/ip-gtd:20050176
17 https://doi.org/10.1080/00207178408933155
18 https://doi.org/10.1080/00207179.2016.1142617
19 https://doi.org/10.1080/07313569508955618
20 https://doi.org/10.1080/15325000390112071
21 https://doi.org/10.1080/15325000590474672
22 https://doi.org/10.1109/41.704892
23 https://doi.org/10.1109/59.32469
24 https://doi.org/10.1109/acc.2016.7526701
25 https://doi.org/10.1109/aieepas.1953.4498667
26 https://doi.org/10.1109/ccece.2012.6334944
27 https://doi.org/10.1109/iecon.2016.7794153
28 https://doi.org/10.1109/rasm.2015.7154648
29 https://doi.org/10.1109/tec.2007.914309
30 https://doi.org/10.1109/tie.2013.2279369
31 https://doi.org/10.1109/tie.2015.2399394
32 https://doi.org/10.1109/tie.2017.2677357
33 https://doi.org/10.1109/tpas.1970.292602
34 https://doi.org/10.1109/tpas.1970.292603
35 https://doi.org/10.1109/tpwrs.2013.2277131
36 https://doi.org/10.1109/tpwrs.2013.2297432
37 https://doi.org/10.1109/tsg.2015.2435258
38 schema:datePublished 2019-03
39 schema:datePublishedReg 2019-03-01
40 schema:description The study proposes a method to design continuous-time event-triggered adaptive integral higher-order sliding mode control for load frequency problems in multi-area power system under load disturbances and parameter uncertainties. Event-triggered strategy reduces the communication burden and lowers the control updating frequency while ensuring high-performance system stability. Event-triggered integral higher-order sliding mode control is used to attain need-based chattering-free control signal compared to event-triggered integral sliding mode control which assures its easy practical implementation. Adaptive estimation of switching gain is used with higher-order integral sliding mode control that eliminates the need of prior knowledge about the system uncertainties. Nonlinear uncertainties in power system like generation rate constraints (GRC) and governor deadband lead to load disturbance that results in deviation of frequency from its nominal value. Robustness of the controller is tested for plant considered with such nonlinearities. System performance without GRC is better; however, proposed controller still ensures finite time convergence of change in frequency under GRC and governor deadband. Proposed controller also guarantees finite time convergence of change in frequency under random varying load disturbances. We have also integrated renewable energy resources in the system and tried to handle relevant output power uncertainty in load frequency problem.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf sg:journal.1283955
45 schema:name Event-Triggered Adaptive Integral Higher-Order Sliding Mode Control for Load Frequency Problems in Multi-area Power Systems
46 schema:pagination 1-16
47 schema:productId N34e630d771f64fc39676484370695e1c
48 N68598e44bcf84e9cae266f8918aa8241
49 N7ae3175a8a93419b9ddb0392830e929f
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105333651
51 https://doi.org/10.1007/s40998-018-0078-0
52 schema:sdDatePublished 2019-04-10T18:16
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N4b87f3dde9a24c7bb5d94d026b379665
55 schema:url http://link.springer.com/10.1007/s40998-018-0078-0
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N34e630d771f64fc39676484370695e1c schema:name readcube_id
60 schema:value 2661853b8a944b0a2d560108dfadbf47a12620f8afeeec5898a5ffd7edfa9a1f
61 rdf:type schema:PropertyValue
62 N3cba096820d940079f7e09409ddaa00f rdf:first sg:person.010334205227.70
63 rdf:rest N43846a18ddb24147b2ae82a12c334e05
64 N43846a18ddb24147b2ae82a12c334e05 rdf:first sg:person.011575377614.01
65 rdf:rest Nc37d823c87cb429188346e23da5ffd89
66 N4b87f3dde9a24c7bb5d94d026b379665 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N67d56209644d4a53b512d887d4edc0e6 schema:name Department of Electrical Engineering, National Institute of Technology Manipur, Imphal, India
69 rdf:type schema:Organization
70 N68598e44bcf84e9cae266f8918aa8241 schema:name doi
71 schema:value 10.1007/s40998-018-0078-0
72 rdf:type schema:PropertyValue
73 N7ae3175a8a93419b9ddb0392830e929f schema:name dimensions_id
74 schema:value pub.1105333651
75 rdf:type schema:PropertyValue
76 N9c7ffb97eee2407eab1cf69ba38258be schema:name Department of Electrical Engineering, National Institute of Technology Manipur, Imphal, India
77 rdf:type schema:Organization
78 Nc37d823c87cb429188346e23da5ffd89 rdf:first sg:person.010250552014.36
79 rdf:rest rdf:nil
80 Nc935ff51070a445486590b8c8e8c4746 rdf:first sg:person.07675325360.15
81 rdf:rest N3cba096820d940079f7e09409ddaa00f
82 Ncaf23abb358c46fa8781cf71e388c41a schema:name Department of Electrical Engineering, National Institute of Technology Manipur, Imphal, India
83 rdf:type schema:Organization
84 Ne129931660e7453894b4282729c16e2a schema:name Department of Electrical Engineering, National Institute of Technology Manipur, Imphal, India
85 rdf:type schema:Organization
86 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
87 schema:name Engineering
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
90 schema:name Electrical and Electronic Engineering
91 rdf:type schema:DefinedTerm
92 sg:journal.1283955 schema:issn 2228-6179
93 2364-1827
94 schema:name Iranian Journal of Science and Technology, Transactions of Electrical Engineering
95 rdf:type schema:Periodical
96 sg:person.010250552014.36 schema:affiliation N67d56209644d4a53b512d887d4edc0e6
97 schema:familyName Narzary
98 schema:givenName Daijiry
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010250552014.36
100 rdf:type schema:Person
101 sg:person.010334205227.70 schema:affiliation Ne129931660e7453894b4282729c16e2a
102 schema:familyName Sarkar
103 schema:givenName Mrinal Kanti
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010334205227.70
105 rdf:type schema:Person
106 sg:person.011575377614.01 schema:affiliation Ncaf23abb358c46fa8781cf71e388c41a
107 schema:familyName Asthana
108 schema:givenName Pankhuri
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011575377614.01
110 rdf:type schema:Person
111 sg:person.07675325360.15 schema:affiliation N9c7ffb97eee2407eab1cf69ba38258be
112 schema:familyName Dev
113 schema:givenName Ark
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07675325360.15
115 rdf:type schema:Person
116 sg:pub.10.1007/978-3-642-03448-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015831022
117 https://doi.org/10.1007/978-3-642-03448-0
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/978-3-642-13250-6_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030825984
120 https://doi.org/10.1007/978-3-642-13250-6_15
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s11768-013-1180-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030719741
123 https://doi.org/10.1007/s11768-013-1180-5
124 rdf:type schema:CreativeWork
125 https://app.dimensions.ai/details/publication/pub.1015831022 schema:CreativeWork
126 https://doi.org/10.1016/0378-7796(91)90060-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019347136
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.cnsns.2010.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025515314
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.conengprac.2007.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019309693
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.conengprac.2017.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083803233
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0142-0615(99)00010-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037717423
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1049/iet-cta.2011.0478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056823440
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1049/ip-cta:20041129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056847448
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1049/ip-gtd:19960452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056852625
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1049/ip-gtd:20050176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056853620
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1080/00207178408933155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033625489
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1080/00207179.2016.1142617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001351044
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1080/07313569508955618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021128194
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/15325000390112071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041851960
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1080/15325000590474672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021341244
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/41.704892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061169375
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/59.32469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061193145
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/acc.2016.7526701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095386060
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/aieepas.1953.4498667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061252732
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/ccece.2012.6334944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094916615
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/iecon.2016.7794153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094579446
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/rasm.2015.7154648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093881639
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tec.2007.914309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061589341
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/tie.2013.2279369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061626305
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tie.2015.2399394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061627128
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/tie.2017.2677357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084206188
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/tpas.1970.292602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061746527
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/tpas.1970.292603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061746528
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/tpwrs.2013.2277131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061779166
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/tpwrs.2013.2297432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061779361
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/tsg.2015.2435258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061790609
185 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...