A Logistic Map-Based Fragile Watermarking Scheme of Digital Images with Tamper Detection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06

AUTHORS

Saswati Trivedy, Arup Kumar Pal

ABSTRACT

Integrity protection is one of the security mechanisms used to prevent the originality of the content from illegal manipulation. In this paper, the authors have proposed an efficient fragile watermarking scheme to localize the temper region in digital images. To ensure the image integrity, the watermark information insertion is realized into the cover image using a key matrix. A logistic map-based chaotic sequence is considered to produce both the key matrix and the watermark information. The proposed scheme is able to retain high visual quality watermarked image and can precisely detect the tampered region if the image undergoes any attack by various malicious tampering methods. The effectiveness of the proposed scheme is presented by performing various malicious tampering attacks on the watermarked images. Experimental results show that the proposed watermarking scheme has achieved the satisfactory performance. The proposed scheme gives better perceptual quality of watermarked image and low false tamper detection rates compared to some other related schemes. More... »

PAGES

103-113

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40998-017-0021-9

DOI

http://dx.doi.org/10.1007/s40998-017-0021-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090337994


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Dhanbad", 
          "id": "https://www.grid.ac/institutes/grid.417984.7", 
          "name": [
            "Department of Computer Science and Engineering, Indian Institute of Technology (ISM), 826004, Dhanbad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trivedy", 
        "givenName": "Saswati", 
        "id": "sg:person.016232726743.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016232726743.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Dhanbad", 
          "id": "https://www.grid.ac/institutes/grid.417984.7", 
          "name": [
            "Department of Computer Science and Engineering, Indian Institute of Technology (ISM), 826004, Dhanbad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pal", 
        "givenName": "Arup Kumar", 
        "id": "sg:person.014556557273.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014556557273.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.image.2012.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001851567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-010-0475-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001937460", 
          "https://doi.org/10.1007/s11042-010-0475-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aeue.2014.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009577404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aeue.2011.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011141795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2008.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013080184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optcom.2009.12.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013933504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijleo.2015.09.217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015698122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jss.2011.02.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019779352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2015.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021714327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.disc.2015.10.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036592233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2006.07.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037528396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optcom.2012.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037563720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2010.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039849042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aeue.2014.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040159333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.482612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043629615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aeue.2016.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047422169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijleo.2013.05.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047704996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optcom.2009.04.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049923656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012119792-6/50125-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052698321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:20030589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056793437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4236.935180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.771066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061180050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mc.1998.4655281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061386432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isitia.2015.7219983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093275324"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06", 
    "datePublishedReg": "2017-06-01", 
    "description": "Integrity protection is one of the security mechanisms used to prevent the originality of the content from illegal manipulation. In this paper, the authors have proposed an efficient fragile watermarking scheme to localize the temper region in digital images. To ensure the image integrity, the watermark information insertion is realized into the cover image using a key matrix. A logistic map-based chaotic sequence is considered to produce both the key matrix and the watermark information. The proposed scheme is able to retain high visual quality watermarked image and can precisely detect the tampered region if the image undergoes any attack by various malicious tampering methods. The effectiveness of the proposed scheme is presented by performing various malicious tampering attacks on the watermarked images. Experimental results show that the proposed watermarking scheme has achieved the satisfactory performance. The proposed scheme gives better perceptual quality of watermarked image and low false tamper detection rates compared to some other related schemes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40998-017-0021-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1283955", 
        "issn": [
          "2228-6179", 
          "2364-1827"
        ], 
        "name": "Iranian Journal of Science and Technology, Transactions of Electrical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "name": "A Logistic Map-Based Fragile Watermarking Scheme of Digital Images with Tamper Detection", 
    "pagination": "103-113", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5250801d3574dfca45c26cbe869e97bd7202e756d6afea71b8b3209dd67f9abd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40998-017-0021-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090337994"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40998-017-0021-9", 
      "https://app.dimensions.ai/details/publication/pub.1090337994"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99812_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40998-017-0021-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40998-017-0021-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40998-017-0021-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40998-017-0021-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40998-017-0021-9'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40998-017-0021-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7129465316c4453cb38e7752577bc7df
4 schema:citation sg:pub.10.1007/s11042-010-0475-5
5 https://doi.org/10.1016/b978-012119792-6/50125-x
6 https://doi.org/10.1016/j.aeue.2011.01.016
7 https://doi.org/10.1016/j.aeue.2014.09.004
8 https://doi.org/10.1016/j.aeue.2014.10.006
9 https://doi.org/10.1016/j.aeue.2016.05.003
10 https://doi.org/10.1016/j.amc.2006.07.036
11 https://doi.org/10.1016/j.chaos.2015.08.001
12 https://doi.org/10.1016/j.disc.2015.10.026
13 https://doi.org/10.1016/j.ijleo.2013.05.040
14 https://doi.org/10.1016/j.ijleo.2015.09.217
15 https://doi.org/10.1016/j.image.2012.12.003
16 https://doi.org/10.1016/j.jss.2011.02.029
17 https://doi.org/10.1016/j.optcom.2009.04.034
18 https://doi.org/10.1016/j.optcom.2009.12.073
19 https://doi.org/10.1016/j.optcom.2012.02.002
20 https://doi.org/10.1016/j.sigpro.2008.10.001
21 https://doi.org/10.1016/j.sigpro.2010.07.019
22 https://doi.org/10.1049/el:20030589
23 https://doi.org/10.1109/4236.935180
24 https://doi.org/10.1109/5.771066
25 https://doi.org/10.1109/isitia.2015.7219983
26 https://doi.org/10.1109/mc.1998.4655281
27 https://doi.org/10.1117/1.482612
28 schema:datePublished 2017-06
29 schema:datePublishedReg 2017-06-01
30 schema:description Integrity protection is one of the security mechanisms used to prevent the originality of the content from illegal manipulation. In this paper, the authors have proposed an efficient fragile watermarking scheme to localize the temper region in digital images. To ensure the image integrity, the watermark information insertion is realized into the cover image using a key matrix. A logistic map-based chaotic sequence is considered to produce both the key matrix and the watermark information. The proposed scheme is able to retain high visual quality watermarked image and can precisely detect the tampered region if the image undergoes any attack by various malicious tampering methods. The effectiveness of the proposed scheme is presented by performing various malicious tampering attacks on the watermarked images. Experimental results show that the proposed watermarking scheme has achieved the satisfactory performance. The proposed scheme gives better perceptual quality of watermarked image and low false tamper detection rates compared to some other related schemes.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf Nc06fdf1764a24b449bfaf9b59265cbaa
35 Nfc65b16425fa4732b39d0d8d6904e910
36 sg:journal.1283955
37 schema:name A Logistic Map-Based Fragile Watermarking Scheme of Digital Images with Tamper Detection
38 schema:pagination 103-113
39 schema:productId N03e2a3d23f0d414880dc73da8207ff12
40 N1c577c1b38c04c9b8e63c1c46dd40ff3
41 N8f69a52d12f24cb49142057bc89359fe
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090337994
43 https://doi.org/10.1007/s40998-017-0021-9
44 schema:sdDatePublished 2019-04-11T09:33
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Ned6e5dab13a5407cb933ccc1480203bd
47 schema:url https://link.springer.com/10.1007%2Fs40998-017-0021-9
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N03e2a3d23f0d414880dc73da8207ff12 schema:name dimensions_id
52 schema:value pub.1090337994
53 rdf:type schema:PropertyValue
54 N1c577c1b38c04c9b8e63c1c46dd40ff3 schema:name readcube_id
55 schema:value 5250801d3574dfca45c26cbe869e97bd7202e756d6afea71b8b3209dd67f9abd
56 rdf:type schema:PropertyValue
57 N6bea079a8ac5452ba556a3aab1c9ff6b rdf:first sg:person.014556557273.19
58 rdf:rest rdf:nil
59 N7129465316c4453cb38e7752577bc7df rdf:first sg:person.016232726743.88
60 rdf:rest N6bea079a8ac5452ba556a3aab1c9ff6b
61 N8f69a52d12f24cb49142057bc89359fe schema:name doi
62 schema:value 10.1007/s40998-017-0021-9
63 rdf:type schema:PropertyValue
64 Nc06fdf1764a24b449bfaf9b59265cbaa schema:volumeNumber 41
65 rdf:type schema:PublicationVolume
66 Ned6e5dab13a5407cb933ccc1480203bd schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nfc65b16425fa4732b39d0d8d6904e910 schema:issueNumber 2
69 rdf:type schema:PublicationIssue
70 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
71 schema:name Information and Computing Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
74 schema:name Artificial Intelligence and Image Processing
75 rdf:type schema:DefinedTerm
76 sg:journal.1283955 schema:issn 2228-6179
77 2364-1827
78 schema:name Iranian Journal of Science and Technology, Transactions of Electrical Engineering
79 rdf:type schema:Periodical
80 sg:person.014556557273.19 schema:affiliation https://www.grid.ac/institutes/grid.417984.7
81 schema:familyName Pal
82 schema:givenName Arup Kumar
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014556557273.19
84 rdf:type schema:Person
85 sg:person.016232726743.88 schema:affiliation https://www.grid.ac/institutes/grid.417984.7
86 schema:familyName Trivedy
87 schema:givenName Saswati
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016232726743.88
89 rdf:type schema:Person
90 sg:pub.10.1007/s11042-010-0475-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001937460
91 https://doi.org/10.1007/s11042-010-0475-5
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/b978-012119792-6/50125-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052698321
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.aeue.2011.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011141795
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.aeue.2014.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009577404
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.aeue.2014.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040159333
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.aeue.2016.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047422169
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.amc.2006.07.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037528396
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.chaos.2015.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021714327
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.disc.2015.10.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036592233
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.ijleo.2013.05.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704996
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.ijleo.2015.09.217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015698122
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.image.2012.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001851567
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.jss.2011.02.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019779352
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.optcom.2009.04.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049923656
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.optcom.2009.12.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013933504
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.optcom.2012.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037563720
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.sigpro.2008.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013080184
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.sigpro.2010.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039849042
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1049/el:20030589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056793437
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/4236.935180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172413
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/5.771066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061180050
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/isitia.2015.7219983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093275324
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/mc.1998.4655281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061386432
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1117/1.482612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043629615
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.417984.7 schema:alternateName Indian Institute of Technology Dhanbad
140 schema:name Department of Computer Science and Engineering, Indian Institute of Technology (ISM), 826004, Dhanbad, India
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...