Improved Estimation of Population Mean Through Known Conventional and Non-Conventional Measures of Auxiliary Variable View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10-29

AUTHORS

Muhammad Irfan, Maria Javed, Zhengyan Lin

ABSTRACT

This paper proposes a generalized class of difference-cum-exponential-type estimators for population mean under simple random sampling without replacement through known conventional and non-conventional auxiliary information. It is observed that some well-known estimators are the members of our proposed class. Moreover, proposed class of estimators behaves efficiently than competing estimators under some simple conditions. Theoretical findings are confirmed with numerical illustration by using six real-life datasets. In addition, Monte Carlo simulation study on four real populations also approved the potential of the proposed class against competing estimators. More... »

PAGES

1851-1862

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40995-018-0645-2

DOI

http://dx.doi.org/10.1007/s40995-018-0645-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107888806


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Statistics, Government College University, Faisalabad, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.411786.d", 
          "name": [
            "Department of Mathematics, Institute of Statistics, Zhejiang University, 310027, Hangzhou, China", 
            "Department of Statistics, Government College University, Faisalabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Irfan", 
        "givenName": "Muhammad", 
        "id": "sg:person.014436416515.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014436416515.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Statistics, Government College University, Faisalabad, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.411786.d", 
          "name": [
            "Department of Mathematics, Institute of Statistics, Zhejiang University, 310027, Hangzhou, China", 
            "Department of Statistics, Government College University, Faisalabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Javed", 
        "givenName": "Maria", 
        "id": "sg:person.011574263704.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011574263704.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Institute of Statistics, Zhejiang University, 310027, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Mathematics, Institute of Statistics, Zhejiang University, 310027, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Zhengyan", 
        "id": "sg:person.016546103003.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016546103003.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-017-1404-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002826251", 
          "https://doi.org/10.1007/978-94-017-1404-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-29", 
    "datePublishedReg": "2018-10-29", 
    "description": "This paper proposes a generalized class of difference-cum-exponential-type estimators for population mean under simple random sampling without replacement through known conventional and non-conventional auxiliary information. It is observed that some well-known estimators are the members of our proposed class. Moreover, proposed class of estimators behaves efficiently than competing estimators under some simple conditions. Theoretical findings are confirmed with numerical illustration by using six real-life datasets. In addition, Monte Carlo simulation study on four real populations also approved the potential of the proposed class against competing estimators.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40995-018-0645-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1270820", 
        "issn": [
          "1028-6276", 
          "2364-1819"
        ], 
        "name": "Iranian Journal of Science and Technology, Transactions A: Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "keywords": [
      "Monte Carlo simulation study", 
      "class of estimators", 
      "auxiliary variables", 
      "simple conditions", 
      "numerical illustrations", 
      "estimator", 
      "theoretical findings", 
      "simulation study", 
      "auxiliary information", 
      "improved estimation", 
      "population means", 
      "class", 
      "real populations", 
      "simple random sampling", 
      "real-life datasets", 
      "random sampling", 
      "estimation", 
      "illustration", 
      "variables", 
      "sampling", 
      "datasets", 
      "conditions", 
      "means", 
      "measures", 
      "information", 
      "addition", 
      "potential", 
      "population", 
      "Conventional", 
      "study", 
      "replacement", 
      "members", 
      "findings", 
      "non-conventional measures", 
      "paper", 
      "exponential-type estimators", 
      "non-conventional auxiliary information", 
      "Carlo simulation study", 
      "Known Conventional"
    ], 
    "name": "Improved Estimation of Population Mean Through Known Conventional and Non-Conventional Measures of Auxiliary Variable", 
    "pagination": "1851-1862", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107888806"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40995-018-0645-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40995-018-0645-2", 
      "https://app.dimensions.ai/details/publication/pub.1107888806"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_766.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40995-018-0645-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40995-018-0645-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40995-018-0645-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40995-018-0645-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40995-018-0645-2'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      22 PREDICATES      65 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40995-018-0645-2 schema:about anzsrc-for:04
2 anzsrc-for:0403
3 schema:author N91ec9d352b0e469597427f37a7c1ef25
4 schema:citation sg:pub.10.1007/978-94-017-1404-4
5 schema:datePublished 2018-10-29
6 schema:datePublishedReg 2018-10-29
7 schema:description This paper proposes a generalized class of difference-cum-exponential-type estimators for population mean under simple random sampling without replacement through known conventional and non-conventional auxiliary information. It is observed that some well-known estimators are the members of our proposed class. Moreover, proposed class of estimators behaves efficiently than competing estimators under some simple conditions. Theoretical findings are confirmed with numerical illustration by using six real-life datasets. In addition, Monte Carlo simulation study on four real populations also approved the potential of the proposed class against competing estimators.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N40b76e3555244fe7af8b2cb912338650
12 N7b06f7bb2e564de08b361b596dab6c30
13 sg:journal.1270820
14 schema:keywords Carlo simulation study
15 Conventional
16 Known Conventional
17 Monte Carlo simulation study
18 addition
19 auxiliary information
20 auxiliary variables
21 class
22 class of estimators
23 conditions
24 datasets
25 estimation
26 estimator
27 exponential-type estimators
28 findings
29 illustration
30 improved estimation
31 information
32 means
33 measures
34 members
35 non-conventional auxiliary information
36 non-conventional measures
37 numerical illustrations
38 paper
39 population
40 population means
41 potential
42 random sampling
43 real populations
44 real-life datasets
45 replacement
46 sampling
47 simple conditions
48 simple random sampling
49 simulation study
50 study
51 theoretical findings
52 variables
53 schema:name Improved Estimation of Population Mean Through Known Conventional and Non-Conventional Measures of Auxiliary Variable
54 schema:pagination 1851-1862
55 schema:productId N0a34446b1f1f4d5b9a65f4f3f0c772c7
56 N52b7ed81bac24062a3c694805e54b602
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107888806
58 https://doi.org/10.1007/s40995-018-0645-2
59 schema:sdDatePublished 2021-12-01T19:42
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N8cbc0725fa7b4a49b1919f1ce11943ce
62 schema:url https://doi.org/10.1007/s40995-018-0645-2
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0a34446b1f1f4d5b9a65f4f3f0c772c7 schema:name doi
67 schema:value 10.1007/s40995-018-0645-2
68 rdf:type schema:PropertyValue
69 N1c8bc94cf3974e51b10ae7866dfa4c81 rdf:first sg:person.011574263704.00
70 rdf:rest N5154c4b3158a4e2a9d73adc18742906b
71 N40b76e3555244fe7af8b2cb912338650 schema:volumeNumber 43
72 rdf:type schema:PublicationVolume
73 N5154c4b3158a4e2a9d73adc18742906b rdf:first sg:person.016546103003.34
74 rdf:rest rdf:nil
75 N52b7ed81bac24062a3c694805e54b602 schema:name dimensions_id
76 schema:value pub.1107888806
77 rdf:type schema:PropertyValue
78 N7b06f7bb2e564de08b361b596dab6c30 schema:issueNumber 4
79 rdf:type schema:PublicationIssue
80 N8cbc0725fa7b4a49b1919f1ce11943ce schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N91ec9d352b0e469597427f37a7c1ef25 rdf:first sg:person.014436416515.25
83 rdf:rest N1c8bc94cf3974e51b10ae7866dfa4c81
84 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
85 schema:name Earth Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
88 schema:name Geology
89 rdf:type schema:DefinedTerm
90 sg:journal.1270820 schema:issn 1028-6276
91 2364-1819
92 schema:name Iranian Journal of Science and Technology, Transactions A: Science
93 schema:publisher Springer Nature
94 rdf:type schema:Periodical
95 sg:person.011574263704.00 schema:affiliation grid-institutes:grid.411786.d
96 schema:familyName Javed
97 schema:givenName Maria
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011574263704.00
99 rdf:type schema:Person
100 sg:person.014436416515.25 schema:affiliation grid-institutes:grid.411786.d
101 schema:familyName Irfan
102 schema:givenName Muhammad
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014436416515.25
104 rdf:type schema:Person
105 sg:person.016546103003.34 schema:affiliation grid-institutes:grid.13402.34
106 schema:familyName Lin
107 schema:givenName Zhengyan
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016546103003.34
109 rdf:type schema:Person
110 sg:pub.10.1007/978-94-017-1404-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002826251
111 https://doi.org/10.1007/978-94-017-1404-4
112 rdf:type schema:CreativeWork
113 grid-institutes:grid.13402.34 schema:alternateName Department of Mathematics, Institute of Statistics, Zhejiang University, 310027, Hangzhou, China
114 schema:name Department of Mathematics, Institute of Statistics, Zhejiang University, 310027, Hangzhou, China
115 rdf:type schema:Organization
116 grid-institutes:grid.411786.d schema:alternateName Department of Statistics, Government College University, Faisalabad, Pakistan
117 schema:name Department of Mathematics, Institute of Statistics, Zhejiang University, 310027, Hangzhou, China
118 Department of Statistics, Government College University, Faisalabad, Pakistan
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...