On Improved Estimation of Population Mean Using Known Coefficient of Skewness of an Auxiliary Variable View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04-19

AUTHORS

Maria Javed, Muhammad Irfan, Tianxiao Pang, Zhengyan Lin

ABSTRACT

This paper proposes an improved general family of ratio-type estimators using the coefficient of skewness of an auxiliary variable for estimating finite population mean under simple random sampling. Bias, mean squared error (MSE) and minimum MSE of the proposed family are derived up to the first degree of approximation. It is found that proposed family behaves better than competing estimators under some simple conditions. Theoretical findings are confirmed with numerical illustration using three natural populations. In addition, Monte Carlo simulation study on a real data set also proves the potential of the proposed family against the common unbiased estimator, traditional ratio estimator and estimators by Yan and Tian (CCIS 106:103–110, 2010). More... »

PAGES

1139-1149

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40995-018-0561-5

DOI

http://dx.doi.org/10.1007/s40995-018-0561-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103474466


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Statistics, Government College University, Faisalabad, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.411786.d", 
          "name": [
            "Department of Mathematics, Institute of Statistics, Zhejiang University, 310027, Hangzhou, China", 
            "Department of Statistics, Government College University, Faisalabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Javed", 
        "givenName": "Maria", 
        "id": "sg:person.011574263704.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011574263704.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Statistics, Government College University, Faisalabad, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.411786.d", 
          "name": [
            "Department of Mathematics, Institute of Statistics, Zhejiang University, 310027, Hangzhou, China", 
            "Department of Statistics, Government College University, Faisalabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Irfan", 
        "givenName": "Muhammad", 
        "id": "sg:person.014436416515.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014436416515.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Institute of Statistics, Zhejiang University, 310027, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Mathematics, Institute of Statistics, Zhejiang University, 310027, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pang", 
        "givenName": "Tianxiao", 
        "id": "sg:person.01255613333.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255613333.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Institute of Statistics, Zhejiang University, 310027, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Mathematics, Institute of Statistics, Zhejiang University, 310027, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Zhengyan", 
        "id": "sg:person.016546103003.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016546103003.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-16339-5_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015159102", 
          "https://doi.org/10.1007/978-3-642-16339-5_14"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04-19", 
    "datePublishedReg": "2018-04-19", 
    "description": "This paper proposes an improved general family of ratio-type estimators using the coefficient of skewness of an auxiliary variable for estimating finite population mean under simple random sampling. Bias, mean squared error (MSE) and minimum MSE of the proposed family are derived up to the first degree of approximation. It is found that proposed family behaves better than competing estimators under some simple conditions. Theoretical findings are confirmed with numerical illustration using three natural populations. In addition, Monte Carlo simulation study on a real data set also proves the potential of the proposed family against the common unbiased estimator, traditional ratio estimator and estimators by Yan and Tian (CCIS 106:103\u2013110, 2010).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40995-018-0561-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1270820", 
        "issn": [
          "1028-6276", 
          "2364-1819"
        ], 
        "name": "Iranian Journal of Science and Technology, Transactions A: Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "keywords": [
      "auxiliary variables", 
      "coefficient of skewness", 
      "traditional ratio estimator", 
      "Monte Carlo simulation study", 
      "real data sets", 
      "ratio-type estimators", 
      "general family", 
      "finite population", 
      "numerical illustrations", 
      "minimum MSE", 
      "simple conditions", 
      "unbiased estimator", 
      "estimator", 
      "simulation study", 
      "theoretical findings", 
      "ratio estimator", 
      "squared error", 
      "improved estimation", 
      "population means", 
      "data sets", 
      "simple random sampling", 
      "skewness", 
      "first degree", 
      "random sampling", 
      "variables", 
      "approximation", 
      "estimation", 
      "MSE", 
      "Tian", 
      "coefficient", 
      "error", 
      "illustration", 
      "set", 
      "Yan", 
      "sampling", 
      "family", 
      "conditions", 
      "means", 
      "bias", 
      "degree", 
      "addition", 
      "potential", 
      "population", 
      "natural populations", 
      "study", 
      "findings", 
      "paper", 
      "Carlo simulation study", 
      "common unbiased estimator"
    ], 
    "name": "On Improved Estimation of Population Mean Using Known Coefficient of Skewness of an Auxiliary Variable", 
    "pagination": "1139-1149", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103474466"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40995-018-0561-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40995-018-0561-5", 
      "https://app.dimensions.ai/details/publication/pub.1103474466"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_784.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40995-018-0561-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40995-018-0561-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40995-018-0561-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40995-018-0561-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40995-018-0561-5'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      22 PREDICATES      75 URIs      66 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40995-018-0561-5 schema:about anzsrc-for:04
2 anzsrc-for:0403
3 schema:author N9d0df5729c5c49a290ad18f849e6aa60
4 schema:citation sg:pub.10.1007/978-3-642-16339-5_14
5 schema:datePublished 2018-04-19
6 schema:datePublishedReg 2018-04-19
7 schema:description This paper proposes an improved general family of ratio-type estimators using the coefficient of skewness of an auxiliary variable for estimating finite population mean under simple random sampling. Bias, mean squared error (MSE) and minimum MSE of the proposed family are derived up to the first degree of approximation. It is found that proposed family behaves better than competing estimators under some simple conditions. Theoretical findings are confirmed with numerical illustration using three natural populations. In addition, Monte Carlo simulation study on a real data set also proves the potential of the proposed family against the common unbiased estimator, traditional ratio estimator and estimators by Yan and Tian (CCIS 106:103–110, 2010).
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1d5c9975174d48fe8cb52385d753767f
12 N9389ba467fb74eb09bff7572664d56f3
13 sg:journal.1270820
14 schema:keywords Carlo simulation study
15 MSE
16 Monte Carlo simulation study
17 Tian
18 Yan
19 addition
20 approximation
21 auxiliary variables
22 bias
23 coefficient
24 coefficient of skewness
25 common unbiased estimator
26 conditions
27 data sets
28 degree
29 error
30 estimation
31 estimator
32 family
33 findings
34 finite population
35 first degree
36 general family
37 illustration
38 improved estimation
39 means
40 minimum MSE
41 natural populations
42 numerical illustrations
43 paper
44 population
45 population means
46 potential
47 random sampling
48 ratio estimator
49 ratio-type estimators
50 real data sets
51 sampling
52 set
53 simple conditions
54 simple random sampling
55 simulation study
56 skewness
57 squared error
58 study
59 theoretical findings
60 traditional ratio estimator
61 unbiased estimator
62 variables
63 schema:name On Improved Estimation of Population Mean Using Known Coefficient of Skewness of an Auxiliary Variable
64 schema:pagination 1139-1149
65 schema:productId N709d4a8f11e5487f9c8b9be7853c0213
66 Ne9eb442cbcaf48b5a3243d932494ad92
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103474466
68 https://doi.org/10.1007/s40995-018-0561-5
69 schema:sdDatePublished 2021-11-01T18:35
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N11fcd5e809c34f2eaf7b8cb6b69aaa76
72 schema:url https://doi.org/10.1007/s40995-018-0561-5
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N11fcd5e809c34f2eaf7b8cb6b69aaa76 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N1d5c9975174d48fe8cb52385d753767f schema:issueNumber 3
79 rdf:type schema:PublicationIssue
80 N317e139c61ee49f8838e578ae053a820 rdf:first sg:person.016546103003.34
81 rdf:rest rdf:nil
82 N66428de583ed4e739e6b1e6602fc0227 rdf:first sg:person.01255613333.43
83 rdf:rest N317e139c61ee49f8838e578ae053a820
84 N709d4a8f11e5487f9c8b9be7853c0213 schema:name doi
85 schema:value 10.1007/s40995-018-0561-5
86 rdf:type schema:PropertyValue
87 N732b04a6f89d4882ac8a92806923f992 rdf:first sg:person.014436416515.25
88 rdf:rest N66428de583ed4e739e6b1e6602fc0227
89 N9389ba467fb74eb09bff7572664d56f3 schema:volumeNumber 43
90 rdf:type schema:PublicationVolume
91 N9d0df5729c5c49a290ad18f849e6aa60 rdf:first sg:person.011574263704.00
92 rdf:rest N732b04a6f89d4882ac8a92806923f992
93 Ne9eb442cbcaf48b5a3243d932494ad92 schema:name dimensions_id
94 schema:value pub.1103474466
95 rdf:type schema:PropertyValue
96 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
97 schema:name Earth Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
100 schema:name Geology
101 rdf:type schema:DefinedTerm
102 sg:journal.1270820 schema:issn 1028-6276
103 2364-1819
104 schema:name Iranian Journal of Science and Technology, Transactions A: Science
105 schema:publisher Springer Nature
106 rdf:type schema:Periodical
107 sg:person.011574263704.00 schema:affiliation grid-institutes:grid.411786.d
108 schema:familyName Javed
109 schema:givenName Maria
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011574263704.00
111 rdf:type schema:Person
112 sg:person.01255613333.43 schema:affiliation grid-institutes:grid.13402.34
113 schema:familyName Pang
114 schema:givenName Tianxiao
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255613333.43
116 rdf:type schema:Person
117 sg:person.014436416515.25 schema:affiliation grid-institutes:grid.411786.d
118 schema:familyName Irfan
119 schema:givenName Muhammad
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014436416515.25
121 rdf:type schema:Person
122 sg:person.016546103003.34 schema:affiliation grid-institutes:grid.13402.34
123 schema:familyName Lin
124 schema:givenName Zhengyan
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016546103003.34
126 rdf:type schema:Person
127 sg:pub.10.1007/978-3-642-16339-5_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015159102
128 https://doi.org/10.1007/978-3-642-16339-5_14
129 rdf:type schema:CreativeWork
130 grid-institutes:grid.13402.34 schema:alternateName Department of Mathematics, Institute of Statistics, Zhejiang University, 310027, Hangzhou, China
131 schema:name Department of Mathematics, Institute of Statistics, Zhejiang University, 310027, Hangzhou, China
132 rdf:type schema:Organization
133 grid-institutes:grid.411786.d schema:alternateName Department of Statistics, Government College University, Faisalabad, Pakistan
134 schema:name Department of Mathematics, Institute of Statistics, Zhejiang University, 310027, Hangzhou, China
135 Department of Statistics, Government College University, Faisalabad, Pakistan
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...