Shifted powers in Lucas–Lehmer sequences View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Michael A. Bennett, Vandita Patel, Samir Siksek

ABSTRACT

We develop a general framework for finding all perfect powers in sequences derived via shifting non-degenerate quadratic Lucas–Lehmer binary recurrence sequences by a fixed integer. By combining this setup with bounds for linear forms in logarithms and results based upon the modularity of elliptic curves defined over totally real fields, we are able to answer a question of Bugeaud, Luca, Mignotte and the third author by explicitly finding all perfect powers of the shape Fk±2 where Fk is the k-th term in the Fibonacci sequence. More... »

PAGES

15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40993-019-0153-2

DOI

http://dx.doi.org/10.1007/s40993-019-0153-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111780855


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Department of Mathematics, University of British Columbia, V6T 1Z2, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bennett", 
        "givenName": "Michael A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Mathematics, University of Toronto, M5S 2E4, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patel", 
        "givenName": "Vandita", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warwick", 
          "id": "https://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Mathematics Institute, University of Warwick, CV4 7AL, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siksek", 
        "givenName": "Samir", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4419-8489-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007769455", 
          "https://doi.org/10.1007/978-1-4419-8489-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-8489-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007769455", 
          "https://doi.org/10.1007/978-1-4419-8489-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10586458.1998.10504355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015823168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0851-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018857135", 
          "https://doi.org/10.1007/978-1-4612-0851-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0851-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018857135", 
          "https://doi.org/10.1007/978-1-4612-0851-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-314x(82)90079-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019586475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-0618-3_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025521481", 
          "https://doi.org/10.1007/978-3-0348-0618-3_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-014-0550-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026529349", 
          "https://doi.org/10.1007/s00222-014-0550-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01444715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035241787", 
          "https://doi.org/10.1007/bf01444715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01444715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035241787", 
          "https://doi.org/10.1007/bf01444715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsco.1996.0125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036727338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004196001211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053781430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004114000681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053843914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/im2000v064n06abeh000314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058168142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0010437x14007957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062054968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0010437x14007957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062054968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/ant.2008.2.859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069058780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/ant.2008.2.859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069058780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2006.163.969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071866979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/aa133-4-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072178420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/em/89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072316921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/jtnb.642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073141756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/jtnb.894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073142035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7146/math.scand.a-11990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073613797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781107359994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098662967"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "We develop a general framework for finding all perfect powers in sequences derived via shifting non-degenerate quadratic Lucas\u2013Lehmer binary recurrence sequences by a fixed integer. By combining this setup with bounds for linear forms in logarithms and results based upon the modularity of elliptic curves defined over totally real fields, we are able to answer a question of Bugeaud, Luca, Mignotte and the third author by explicitly finding all perfect powers of the shape Fk\u00b12 where Fk is the k-th term in the Fibonacci sequence.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40993-019-0153-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2758483", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1053185", 
        "issn": [
          "2522-0160", 
          "2363-9555"
        ], 
        "name": "Research in Number Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Shifted powers in Lucas\u2013Lehmer sequences", 
    "pagination": "15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fc62ce46acd182b44773b9f9b06e342ac49d656f343724de868b91db11161a3f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40993-019-0153-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111780855"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40993-019-0153-2", 
      "https://app.dimensions.ai/details/publication/pub.1111780855"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000327_0000000327/records_114979_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40993-019-0153-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40993-019-0153-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40993-019-0153-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40993-019-0153-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40993-019-0153-2'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40993-019-0153-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb92179ae97234cf7a7b9d42004b1e771
4 schema:citation sg:pub.10.1007/978-1-4419-8489-0
5 sg:pub.10.1007/978-1-4612-0851-8
6 sg:pub.10.1007/978-3-0348-0618-3_4
7 sg:pub.10.1007/bf01444715
8 sg:pub.10.1007/s00222-014-0550-z
9 https://doi.org/10.1006/jsco.1996.0125
10 https://doi.org/10.1016/0022-314x(82)90079-8
11 https://doi.org/10.1017/cbo9781107359994
12 https://doi.org/10.1017/s0305004114000681
13 https://doi.org/10.1017/s0305004196001211
14 https://doi.org/10.1070/im2000v064n06abeh000314
15 https://doi.org/10.1080/10586458.1998.10504355
16 https://doi.org/10.1112/s0010437x14007957
17 https://doi.org/10.2140/ant.2008.2.859
18 https://doi.org/10.4007/annals.2006.163.969
19 https://doi.org/10.4064/aa133-4-3
20 https://doi.org/10.4171/em/89
21 https://doi.org/10.5802/jtnb.642
22 https://doi.org/10.5802/jtnb.894
23 https://doi.org/10.7146/math.scand.a-11990
24 schema:datePublished 2019-03
25 schema:datePublishedReg 2019-03-01
26 schema:description We develop a general framework for finding all perfect powers in sequences derived via shifting non-degenerate quadratic Lucas–Lehmer binary recurrence sequences by a fixed integer. By combining this setup with bounds for linear forms in logarithms and results based upon the modularity of elliptic curves defined over totally real fields, we are able to answer a question of Bugeaud, Luca, Mignotte and the third author by explicitly finding all perfect powers of the shape Fk±2 where Fk is the k-th term in the Fibonacci sequence.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf Nd0032f1c33a14e2eb652d8e88efef3e7
31 Nf31c4a9cf31241538be3e27755bdf9a4
32 sg:journal.1053185
33 schema:name Shifted powers in Lucas–Lehmer sequences
34 schema:pagination 15
35 schema:productId N26fba9591e464eb9adc8b26f19ba9c6d
36 N997b26ad1cf34fbfba3584bd6e3fac1f
37 Nc7b4674ac25d451e814f651a97c4776a
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111780855
39 https://doi.org/10.1007/s40993-019-0153-2
40 schema:sdDatePublished 2019-04-11T08:59
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N000f408ea70e478aa3e8a3b22462ad80
43 schema:url https://link.springer.com/10.1007%2Fs40993-019-0153-2
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N000f408ea70e478aa3e8a3b22462ad80 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N26fba9591e464eb9adc8b26f19ba9c6d schema:name readcube_id
50 schema:value fc62ce46acd182b44773b9f9b06e342ac49d656f343724de868b91db11161a3f
51 rdf:type schema:PropertyValue
52 N28a626ecfdcf44b4a19c9d79612c6b79 schema:affiliation https://www.grid.ac/institutes/grid.7372.1
53 schema:familyName Siksek
54 schema:givenName Samir
55 rdf:type schema:Person
56 N6b21bfa47fc84cfbae0c9eba5a444ecd rdf:first Ne575e4bac67d46d8b18da920af7ee290
57 rdf:rest Nad6bd47ab0914f22a99c53475174b4c8
58 N997b26ad1cf34fbfba3584bd6e3fac1f schema:name doi
59 schema:value 10.1007/s40993-019-0153-2
60 rdf:type schema:PropertyValue
61 Nad6bd47ab0914f22a99c53475174b4c8 rdf:first N28a626ecfdcf44b4a19c9d79612c6b79
62 rdf:rest rdf:nil
63 Nb6e1c1fbe76a4d5a81c66e608ac42dda schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
64 schema:familyName Bennett
65 schema:givenName Michael A.
66 rdf:type schema:Person
67 Nb92179ae97234cf7a7b9d42004b1e771 rdf:first Nb6e1c1fbe76a4d5a81c66e608ac42dda
68 rdf:rest N6b21bfa47fc84cfbae0c9eba5a444ecd
69 Nc7b4674ac25d451e814f651a97c4776a schema:name dimensions_id
70 schema:value pub.1111780855
71 rdf:type schema:PropertyValue
72 Nd0032f1c33a14e2eb652d8e88efef3e7 schema:volumeNumber 5
73 rdf:type schema:PublicationVolume
74 Ne575e4bac67d46d8b18da920af7ee290 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
75 schema:familyName Patel
76 schema:givenName Vandita
77 rdf:type schema:Person
78 Nf31c4a9cf31241538be3e27755bdf9a4 schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
81 schema:name Mathematical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
84 schema:name Pure Mathematics
85 rdf:type schema:DefinedTerm
86 sg:grant.2758483 http://pending.schema.org/fundedItem sg:pub.10.1007/s40993-019-0153-2
87 rdf:type schema:MonetaryGrant
88 sg:journal.1053185 schema:issn 2363-9555
89 2522-0160
90 schema:name Research in Number Theory
91 rdf:type schema:Periodical
92 sg:pub.10.1007/978-1-4419-8489-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007769455
93 https://doi.org/10.1007/978-1-4419-8489-0
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/978-1-4612-0851-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018857135
96 https://doi.org/10.1007/978-1-4612-0851-8
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/978-3-0348-0618-3_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025521481
99 https://doi.org/10.1007/978-3-0348-0618-3_4
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf01444715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035241787
102 https://doi.org/10.1007/bf01444715
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s00222-014-0550-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1026529349
105 https://doi.org/10.1007/s00222-014-0550-z
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1006/jsco.1996.0125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036727338
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0022-314x(82)90079-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019586475
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1017/cbo9781107359994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098662967
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1017/s0305004114000681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053843914
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1017/s0305004196001211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053781430
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1070/im2000v064n06abeh000314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058168142
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1080/10586458.1998.10504355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015823168
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1112/s0010437x14007957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062054968
122 rdf:type schema:CreativeWork
123 https://doi.org/10.2140/ant.2008.2.859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069058780
124 rdf:type schema:CreativeWork
125 https://doi.org/10.4007/annals.2006.163.969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071866979
126 rdf:type schema:CreativeWork
127 https://doi.org/10.4064/aa133-4-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072178420
128 rdf:type schema:CreativeWork
129 https://doi.org/10.4171/em/89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072316921
130 rdf:type schema:CreativeWork
131 https://doi.org/10.5802/jtnb.642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073141756
132 rdf:type schema:CreativeWork
133 https://doi.org/10.5802/jtnb.894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073142035
134 rdf:type schema:CreativeWork
135 https://doi.org/10.7146/math.scand.a-11990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073613797
136 rdf:type schema:CreativeWork
137 https://www.grid.ac/institutes/grid.17063.33 schema:alternateName University of Toronto
138 schema:name Department of Mathematics, University of Toronto, M5S 2E4, Toronto, Canada
139 rdf:type schema:Organization
140 https://www.grid.ac/institutes/grid.17091.3e schema:alternateName University of British Columbia
141 schema:name Department of Mathematics, University of British Columbia, V6T 1Z2, Vancouver, BC, Canada
142 rdf:type schema:Organization
143 https://www.grid.ac/institutes/grid.7372.1 schema:alternateName University of Warwick
144 schema:name Mathematics Institute, University of Warwick, CV4 7AL, Coventry, UK
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...