On the Laxton group View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Miho Aoki, Masanari Kida

ABSTRACT

In 1969, Laxton defined a multiplicative group structure on the set of rational sequences satisfying a fixed linear recurrence of degree two. He also defined some natural subgroups of the group, and determined the structures of their quotient groups. Nothing has been known about the structure of Laxton’s whole group and its interpretation. In this paper, we redefine his group in a natural way and determine the structure of the whole group, which clarifies Laxton’s results on the quotient groups. This definition makes it possible to use the group to show various properties of such sequences. More... »

PAGES

13

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40993-019-0152-3

DOI

http://dx.doi.org/10.1007/s40993-019-0152-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111501977


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shimane University", 
          "id": "https://www.grid.ac/institutes/grid.411621.1", 
          "name": [
            "Department of Mathematics, Interdisciplinary Faculty of Science and Engineering, Shimane University, 690-8504, Matsue, Shimane, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aoki", 
        "givenName": "Miho", 
        "id": "sg:person.016432246360.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016432246360.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Science", 
          "id": "https://www.grid.ac/institutes/grid.143643.7", 
          "name": [
            "Department of Mathematics, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka Shinjuku, 162-8601, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kida", 
        "givenName": "Masanari", 
        "id": "sg:person.013320367034.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013320367034.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2307/2369308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005642918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1920-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017153141", 
          "https://doi.org/10.1007/978-1-4757-1920-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1920-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017153141", 
          "https://doi.org/10.1007/978-1-4757-1920-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0759-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033431869", 
          "https://doi.org/10.1007/978-1-4612-0759-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0759-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033431869", 
          "https://doi.org/10.1007/978-1-4612-0759-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0759-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033431869", 
          "https://doi.org/10.1007/978-1-4612-0759-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1938-1501967-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046197316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/memo/0551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059343600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-69-03687-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064418242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1970.32.173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069064559"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "In 1969, Laxton defined a multiplicative group structure on the set of rational sequences satisfying a fixed linear recurrence of degree two. He also defined some natural subgroups of the group, and determined the structures of their quotient groups. Nothing has been known about the structure of Laxton\u2019s whole group and its interpretation. In this paper, we redefine his group in a natural way and determine the structure of the whole group, which clarifies Laxton\u2019s results on the quotient groups. This definition makes it possible to use the group to show various properties of such sequences.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/s40993-019-0152-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053185", 
        "issn": [
          "2522-0160", 
          "2363-9555"
        ], 
        "name": "Research in Number Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "On the Laxton group", 
    "pagination": "13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cfbde9b7579b131ace59f0961746348850b68d8807921f4eb25b78ce76b895de"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40993-019-0152-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111501977"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40993-019-0152-3", 
      "https://app.dimensions.ai/details/publication/pub.1111501977"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74928_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40993-019-0152-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40993-019-0152-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40993-019-0152-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40993-019-0152-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40993-019-0152-3'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40993-019-0152-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nab06fedc00d14dce9542d61a6bd8ab1f
4 schema:citation sg:pub.10.1007/978-1-4612-0759-7
5 sg:pub.10.1007/978-1-4757-1920-8
6 https://doi.org/10.1090/memo/0551
7 https://doi.org/10.1090/s0002-9947-1938-1501967-8
8 https://doi.org/10.1215/s0012-7094-69-03687-4
9 https://doi.org/10.2140/pjm.1970.32.173
10 https://doi.org/10.2307/2369308
11 schema:datePublished 2019-03
12 schema:datePublishedReg 2019-03-01
13 schema:description In 1969, Laxton defined a multiplicative group structure on the set of rational sequences satisfying a fixed linear recurrence of degree two. He also defined some natural subgroups of the group, and determined the structures of their quotient groups. Nothing has been known about the structure of Laxton’s whole group and its interpretation. In this paper, we redefine his group in a natural way and determine the structure of the whole group, which clarifies Laxton’s results on the quotient groups. This definition makes it possible to use the group to show various properties of such sequences.
14 schema:genre non_research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N4d42b79ed913419ebf4a85779796ea08
18 N982f43ddb8944f7f8c58408faea8f8f3
19 sg:journal.1053185
20 schema:name On the Laxton group
21 schema:pagination 13
22 schema:productId N69bc806464be4e7faff4a65e976b1892
23 Ne939ad3dd37a46e0bf583977ec2757e2
24 Nfe7a5bb36fdd4f198ed9c25d0458ce4a
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111501977
26 https://doi.org/10.1007/s40993-019-0152-3
27 schema:sdDatePublished 2019-04-11T08:42
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Nef1a0b9b64784479b147155963997381
30 schema:url https://link.springer.com/10.1007%2Fs40993-019-0152-3
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N4d42b79ed913419ebf4a85779796ea08 schema:volumeNumber 5
35 rdf:type schema:PublicationVolume
36 N69bc806464be4e7faff4a65e976b1892 schema:name dimensions_id
37 schema:value pub.1111501977
38 rdf:type schema:PropertyValue
39 N982f43ddb8944f7f8c58408faea8f8f3 schema:issueNumber 1
40 rdf:type schema:PublicationIssue
41 Nab06fedc00d14dce9542d61a6bd8ab1f rdf:first sg:person.016432246360.67
42 rdf:rest Nabeb26550efd4087b19e2ecd392f860b
43 Nabeb26550efd4087b19e2ecd392f860b rdf:first sg:person.013320367034.22
44 rdf:rest rdf:nil
45 Ne939ad3dd37a46e0bf583977ec2757e2 schema:name readcube_id
46 schema:value cfbde9b7579b131ace59f0961746348850b68d8807921f4eb25b78ce76b895de
47 rdf:type schema:PropertyValue
48 Nef1a0b9b64784479b147155963997381 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Nfe7a5bb36fdd4f198ed9c25d0458ce4a schema:name doi
51 schema:value 10.1007/s40993-019-0152-3
52 rdf:type schema:PropertyValue
53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
54 schema:name Mathematical Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
57 schema:name Pure Mathematics
58 rdf:type schema:DefinedTerm
59 sg:journal.1053185 schema:issn 2363-9555
60 2522-0160
61 schema:name Research in Number Theory
62 rdf:type schema:Periodical
63 sg:person.013320367034.22 schema:affiliation https://www.grid.ac/institutes/grid.143643.7
64 schema:familyName Kida
65 schema:givenName Masanari
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013320367034.22
67 rdf:type schema:Person
68 sg:person.016432246360.67 schema:affiliation https://www.grid.ac/institutes/grid.411621.1
69 schema:familyName Aoki
70 schema:givenName Miho
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016432246360.67
72 rdf:type schema:Person
73 sg:pub.10.1007/978-1-4612-0759-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033431869
74 https://doi.org/10.1007/978-1-4612-0759-7
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/978-1-4757-1920-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017153141
77 https://doi.org/10.1007/978-1-4757-1920-8
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1090/memo/0551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343600
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1090/s0002-9947-1938-1501967-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046197316
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1215/s0012-7094-69-03687-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064418242
84 rdf:type schema:CreativeWork
85 https://doi.org/10.2140/pjm.1970.32.173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069064559
86 rdf:type schema:CreativeWork
87 https://doi.org/10.2307/2369308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005642918
88 rdf:type schema:CreativeWork
89 https://www.grid.ac/institutes/grid.143643.7 schema:alternateName Tokyo University of Science
90 schema:name Department of Mathematics, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka Shinjuku, 162-8601, Tokyo, Japan
91 rdf:type schema:Organization
92 https://www.grid.ac/institutes/grid.411621.1 schema:alternateName Shimane University
93 schema:name Department of Mathematics, Interdisciplinary Faculty of Science and Engineering, Shimane University, 690-8504, Matsue, Shimane, Japan
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...