Newton polygons arising from special families of cyclic covers of the projective line View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Wanlin Li, Elena Mantovan, Rachel Pries, Yunqing Tang

ABSTRACT

By a result of Moonen, there are exactly 20 positive-dimensional families of cyclic covers of the projective line for which the Torelli image is open and dense in the associated Shimura variety. For each of these, we compute the Newton polygons, and the μ-ordinary Ekedahl–Oort type, occurring in the characteristic p reduction of the Shimura variety. We prove that all but a few of the Newton polygons appear on the open Torelli locus. As an application, we produce multiple new examples of Newton polygons and Ekedahl–Oort types of Jacobians of smooth curves in characteristic p. Under certain congruence conditions on p, these include: the supersingular Newton polygon for genus 5, 6, 7; fourteen new non-supersingular Newton polygons for genus 5–7; eleven new Ekedahl–Oort types for genus 4–7 and, for all g≥6, the Newton polygon with p-rank g-6 with slopes 1 / 6 and 5 / 6. More... »

PAGES

12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40993-018-0149-3

DOI

http://dx.doi.org/10.1007/s40993-018-0149-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111310834


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Mathematics, University of Wisconsin, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Wanlin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Department of Mathematics, California Institute of Technology Pasadena, 91125, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mantovan", 
        "givenName": "Elena", 
        "id": "sg:person.01364040620.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364040620.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Mathematics, Colorado State University, 80523, Fort Collins, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pries", 
        "givenName": "Rachel", 
        "id": "sg:person.010016474605.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010016474605.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Mathematics, Princeton University, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Yunqing", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4612-4264-2_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005014067", 
          "https://doi.org/10.1007/978-1-4612-4264-2_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4264-2_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005014067", 
          "https://doi.org/10.1007/978-1-4612-4264-2_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ansens.2003.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008886054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00229-016-0863-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009405897", 
          "https://doi.org/10.1007/s00229-016-0863-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00229-016-0863-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009405897", 
          "https://doi.org/10.1007/s00229-016-0863-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02831622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012365086", 
          "https://doi.org/10.1007/bf02831622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1000102604688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013542390", 
          "https://doi.org/10.1023/a:1000102604688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/forum.2010.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014110121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1017513122376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016524870", 
          "https://doi.org/10.1023/a:1017513122376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00229-005-0559-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020383938", 
          "https://doi.org/10.1007/s00229-005-0559-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00229-005-0559-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020383938", 
          "https://doi.org/10.1007/s00229-005-0559-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00229-005-0559-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020383938", 
          "https://doi.org/10.1007/s00229-005-0559-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0894-0347-99-00322-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020947022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.2004.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025458814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-010-0299-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028483134", 
          "https://doi.org/10.1007/s00222-010-0299-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1999.509.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029720008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00208-012-0892-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031112523", 
          "https://doi.org/10.1007/s00208-012-0892-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2011.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035647003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s000140300007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050388913", 
          "https://doi.org/10.1007/s000140300007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0894-0347-2012-00744-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059339418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1793042109002560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063019547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-01-10716-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064415182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-99-09701-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064420494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1970748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2007007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069694771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-2010-031-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072268714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00209-017-1867-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084019484", 
          "https://doi.org/10.1007/s00209-017-1867-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00209-017-1867-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084019484", 
          "https://doi.org/10.1007/s00209-017-1867-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400837205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096909970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/cbms/093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098708507"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "By a result of Moonen, there are exactly 20 positive-dimensional families of cyclic covers of the projective line for which the Torelli image is open and dense in the associated Shimura variety. For each of these, we compute the Newton polygons, and the \u03bc-ordinary Ekedahl\u2013Oort type, occurring in the characteristic p reduction of the Shimura variety. We prove that all but a few of the Newton polygons appear on the open Torelli locus. As an application, we produce multiple new examples of Newton polygons and Ekedahl\u2013Oort types of Jacobians of smooth curves in characteristic p. Under certain congruence conditions on p, these include: the supersingular Newton polygon for genus 5, 6, 7; fourteen new non-supersingular Newton polygons for genus 5\u20137; eleven new Ekedahl\u2013Oort types for genus 4\u20137 and, for all g\u22656, the Newton polygon with p-rank g-6 with slopes 1 / 6 and 5 / 6.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40993-018-0149-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4312379", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1053185", 
        "issn": [
          "2522-0160", 
          "2363-9555"
        ], 
        "name": "Research in Number Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Newton polygons arising from special families of cyclic covers of the projective line", 
    "pagination": "12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "74df042899cd221b7724d317049cce2335388f13647af4cd58ac26fa55885e9c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40993-018-0149-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111310834"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40993-018-0149-3", 
      "https://app.dimensions.ai/details/publication/pub.1111310834"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000315_0000000315/records_6298_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40993-018-0149-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0149-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0149-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0149-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0149-3'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40993-018-0149-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0de3ee9dcb30463eac1cf3c1e8b83ecc
4 schema:citation sg:pub.10.1007/978-1-4612-4264-2_7
5 sg:pub.10.1007/bf02831622
6 sg:pub.10.1007/s000140300007
7 sg:pub.10.1007/s00208-012-0892-z
8 sg:pub.10.1007/s00209-017-1867-2
9 sg:pub.10.1007/s00222-010-0299-y
10 sg:pub.10.1007/s00229-005-0559-0
11 sg:pub.10.1007/s00229-016-0863-x
12 sg:pub.10.1023/a:1000102604688
13 sg:pub.10.1023/a:1017513122376
14 https://doi.org/10.1016/j.aim.2011.04.004
15 https://doi.org/10.1016/j.ansens.2003.04.004
16 https://doi.org/10.1090/cbms/093
17 https://doi.org/10.1090/s0894-0347-2012-00744-9
18 https://doi.org/10.1090/s0894-0347-99-00322-7
19 https://doi.org/10.1142/s1793042109002560
20 https://doi.org/10.1215/s0012-7094-01-10716-3
21 https://doi.org/10.1215/s0012-7094-99-09701-6
22 https://doi.org/10.1515/9781400837205
23 https://doi.org/10.1515/crll.1999.509.67
24 https://doi.org/10.1515/crll.2004.056
25 https://doi.org/10.1515/forum.2010.030
26 https://doi.org/10.2307/1970748
27 https://doi.org/10.2307/2007007
28 https://doi.org/10.4153/cjm-2010-031-2
29 schema:datePublished 2019-03
30 schema:datePublishedReg 2019-03-01
31 schema:description By a result of Moonen, there are exactly 20 positive-dimensional families of cyclic covers of the projective line for which the Torelli image is open and dense in the associated Shimura variety. For each of these, we compute the Newton polygons, and the μ-ordinary Ekedahl–Oort type, occurring in the characteristic p reduction of the Shimura variety. We prove that all but a few of the Newton polygons appear on the open Torelli locus. As an application, we produce multiple new examples of Newton polygons and Ekedahl–Oort types of Jacobians of smooth curves in characteristic p. Under certain congruence conditions on p, these include: the supersingular Newton polygon for genus 5, 6, 7; fourteen new non-supersingular Newton polygons for genus 5–7; eleven new Ekedahl–Oort types for genus 4–7 and, for all g≥6, the Newton polygon with p-rank g-6 with slopes 1 / 6 and 5 / 6.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N6a04aad495f04c5caee4da8f6a3d82a1
36 N82a4ad49edab419f8b864a8290a4692f
37 sg:journal.1053185
38 schema:name Newton polygons arising from special families of cyclic covers of the projective line
39 schema:pagination 12
40 schema:productId N63c2422e287344fabb941fae94a2c920
41 N8473fbb7a148475385ea8753e614e1a0
42 Na67b569b86be4bda8b01d7bce2217573
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111310834
44 https://doi.org/10.1007/s40993-018-0149-3
45 schema:sdDatePublished 2019-04-11T08:37
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N9071444246bc43e0947a7255004c050a
48 schema:url https://link.springer.com/10.1007%2Fs40993-018-0149-3
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0de3ee9dcb30463eac1cf3c1e8b83ecc rdf:first Na2069476a8f543d099b681b0a2f0c39c
53 rdf:rest N5018310773f54c34a37552616bf4afa2
54 N107720a2b4404f3f83ea33752ce29598 rdf:first N19acc6f3ee5943d3b46e2ef032027450
55 rdf:rest rdf:nil
56 N19acc6f3ee5943d3b46e2ef032027450 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
57 schema:familyName Tang
58 schema:givenName Yunqing
59 rdf:type schema:Person
60 N5018310773f54c34a37552616bf4afa2 rdf:first sg:person.01364040620.15
61 rdf:rest N8f3a6d69e4ff481c87c9fc0597154f4c
62 N63c2422e287344fabb941fae94a2c920 schema:name doi
63 schema:value 10.1007/s40993-018-0149-3
64 rdf:type schema:PropertyValue
65 N6a04aad495f04c5caee4da8f6a3d82a1 schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 N82a4ad49edab419f8b864a8290a4692f schema:volumeNumber 5
68 rdf:type schema:PublicationVolume
69 N8473fbb7a148475385ea8753e614e1a0 schema:name dimensions_id
70 schema:value pub.1111310834
71 rdf:type schema:PropertyValue
72 N8f3a6d69e4ff481c87c9fc0597154f4c rdf:first sg:person.010016474605.80
73 rdf:rest N107720a2b4404f3f83ea33752ce29598
74 N9071444246bc43e0947a7255004c050a schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Na2069476a8f543d099b681b0a2f0c39c schema:affiliation https://www.grid.ac/institutes/grid.14003.36
77 schema:familyName Li
78 schema:givenName Wanlin
79 rdf:type schema:Person
80 Na67b569b86be4bda8b01d7bce2217573 schema:name readcube_id
81 schema:value 74df042899cd221b7724d317049cce2335388f13647af4cd58ac26fa55885e9c
82 rdf:type schema:PropertyValue
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
87 schema:name Pure Mathematics
88 rdf:type schema:DefinedTerm
89 sg:grant.4312379 http://pending.schema.org/fundedItem sg:pub.10.1007/s40993-018-0149-3
90 rdf:type schema:MonetaryGrant
91 sg:journal.1053185 schema:issn 2363-9555
92 2522-0160
93 schema:name Research in Number Theory
94 rdf:type schema:Periodical
95 sg:person.010016474605.80 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
96 schema:familyName Pries
97 schema:givenName Rachel
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010016474605.80
99 rdf:type schema:Person
100 sg:person.01364040620.15 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
101 schema:familyName Mantovan
102 schema:givenName Elena
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364040620.15
104 rdf:type schema:Person
105 sg:pub.10.1007/978-1-4612-4264-2_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005014067
106 https://doi.org/10.1007/978-1-4612-4264-2_7
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf02831622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012365086
109 https://doi.org/10.1007/bf02831622
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s000140300007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050388913
112 https://doi.org/10.1007/s000140300007
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00208-012-0892-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031112523
115 https://doi.org/10.1007/s00208-012-0892-z
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00209-017-1867-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084019484
118 https://doi.org/10.1007/s00209-017-1867-2
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00222-010-0299-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028483134
121 https://doi.org/10.1007/s00222-010-0299-y
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00229-005-0559-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020383938
124 https://doi.org/10.1007/s00229-005-0559-0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00229-016-0863-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009405897
127 https://doi.org/10.1007/s00229-016-0863-x
128 rdf:type schema:CreativeWork
129 sg:pub.10.1023/a:1000102604688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013542390
130 https://doi.org/10.1023/a:1000102604688
131 rdf:type schema:CreativeWork
132 sg:pub.10.1023/a:1017513122376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016524870
133 https://doi.org/10.1023/a:1017513122376
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.aim.2011.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035647003
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ansens.2003.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008886054
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1090/cbms/093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098708507
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1090/s0894-0347-2012-00744-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059339418
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1090/s0894-0347-99-00322-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020947022
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1142/s1793042109002560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063019547
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1215/s0012-7094-01-10716-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415182
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1215/s0012-7094-99-09701-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064420494
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1515/9781400837205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096909970
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1515/crll.1999.509.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029720008
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1515/crll.2004.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025458814
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1515/forum.2010.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014110121
158 rdf:type schema:CreativeWork
159 https://doi.org/10.2307/1970748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676062
160 rdf:type schema:CreativeWork
161 https://doi.org/10.2307/2007007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069694771
162 rdf:type schema:CreativeWork
163 https://doi.org/10.4153/cjm-2010-031-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072268714
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
166 schema:name Department of Mathematics, University of Wisconsin, 53706, Madison, WI, USA
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
169 schema:name Department of Mathematics, Princeton University, 08540, Princeton, NJ, USA
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
172 schema:name Department of Mathematics, California Institute of Technology Pasadena, 91125, Pasadena, CA, USA
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.47894.36 schema:alternateName Colorado State University
175 schema:name Department of Mathematics, Colorado State University, 80523, Fort Collins, CO, USA
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...