Traces of CM values and cycle integrals of polyharmonic Maass forms View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Toshiki Matsusaka

ABSTRACT

Lagarias and Rhoades generalized harmonic Maass forms by considering forms which are annihilated by a number of iterations of the action of the ξ-operator. In our previous work, we considered polyharmonic weak Maass forms by allowing the exponential growth at cusps, and constructed a basis of the space of such forms. This paper focuses on the case of half-integral weight. We construct a basis as an analogue of our work, and give arithmetic formulas for the Fourier coefficients in terms of traces of CM values and cycle integrals of polyharmonic weak Maass forms. These results put the known results into a common framework. More... »

PAGES

8

Journal

TITLE

Research in Number Theory

ISSUE

1

VOLUME

5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40993-018-0148-4

DOI

http://dx.doi.org/10.1007/s40993-018-0148-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110758703


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Graduate School of Mathematics, Kyushu University, Motooka 744, Nishi-ku, 819-0395, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsusaka", 
        "givenName": "Toshiki", 
        "id": "sg:person.015053254646.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053254646.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jnt.2016.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006081427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11139-013-9544-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010561651", 
          "https://doi.org/10.1007/s11139-013-9544-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnt.2014.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017091168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01455989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018275843", 
          "https://doi.org/10.1007/bf01455989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01455989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018275843", 
          "https://doi.org/10.1007/bf01455989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01390005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022160824", 
          "https://doi.org/10.1007/bf01390005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnt.2013.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022433624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crelle.2006.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024362631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01458081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026477938", 
          "https://doi.org/10.1007/bf01458081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01458081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026477938", 
          "https://doi.org/10.1007/bf01458081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1026602992", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-11761-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026602992", 
          "https://doi.org/10.1007/978-3-662-11761-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-11761-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026602992", 
          "https://doi.org/10.1007/978-3-662-11761-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2012.09.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030215212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0027763000010643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031511455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-48039-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033030863", 
          "https://doi.org/10.1007/978-3-642-48039-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-48039-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033030863", 
          "https://doi.org/10.1007/978-3-642-48039-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2197-9847-1-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037077049", 
          "https://doi.org/10.1186/2197-9847-1-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0027763000015932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038401870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11139-015-9729-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041548332", 
          "https://doi.org/10.1007/s11139-015-9729-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1977.293-294.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048247473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0909-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050140295", 
          "https://doi.org/10.1007/978-1-4612-0909-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0909-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050140295", 
          "https://doi.org/10.1007/978-1-4612-0909-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-04-12513-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064415475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/ant.2008.2.573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069058770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2011.173.2.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/pamq.2008.v4.n4.a15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072463555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2018.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101032485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40687-018-0138-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101901152", 
          "https://doi.org/10.1007/s40687-018-0138-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40687-018-0138-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101901152", 
          "https://doi.org/10.1007/s40687-018-0138-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40687-018-0138-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101901152", 
          "https://doi.org/10.1007/s40687-018-0138-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/coll/064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103642916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/aa170905-7-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104693267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2018.08.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106381539"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Lagarias and Rhoades generalized harmonic Maass forms by considering forms which are annihilated by a number of iterations of the action of the \u03be-operator. In our previous work, we considered polyharmonic weak Maass forms by allowing the exponential growth at cusps, and constructed a basis of the space of such forms. This paper focuses on the case of half-integral weight. We construct a basis as an analogue of our work, and give arithmetic formulas for the Fourier coefficients in terms of traces of CM values and cycle integrals of polyharmonic weak Maass forms. These results put the known results into a common framework.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40993-018-0148-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053185", 
        "issn": [
          "2522-0160", 
          "2363-9555"
        ], 
        "name": "Research in Number Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Traces of CM values and cycle integrals of polyharmonic Maass forms", 
    "pagination": "8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2452a6952643eae544574542d98669713c9ae0e29d6c639025d172b716700298"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40993-018-0148-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110758703"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40993-018-0148-4", 
      "https://app.dimensions.ai/details/publication/pub.1110758703"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000298_0000000298/records_26525_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40993-018-0148-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0148-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0148-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0148-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0148-4'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40993-018-0148-4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N724546e92993404db6eb63432a8c880c
4 schema:citation sg:pub.10.1007/978-1-4612-0909-6
5 sg:pub.10.1007/978-3-642-48039-3
6 sg:pub.10.1007/978-3-662-11761-3
7 sg:pub.10.1007/bf01390005
8 sg:pub.10.1007/bf01455989
9 sg:pub.10.1007/bf01458081
10 sg:pub.10.1007/s11139-013-9544-5
11 sg:pub.10.1007/s11139-015-9729-1
12 sg:pub.10.1007/s40687-018-0138-0
13 sg:pub.10.1186/2197-9847-1-6
14 https://app.dimensions.ai/details/publication/pub.1026602992
15 https://doi.org/10.1016/j.aim.2012.09.025
16 https://doi.org/10.1016/j.aim.2018.02.015
17 https://doi.org/10.1016/j.jmaa.2018.08.055
18 https://doi.org/10.1016/j.jnt.2013.01.011
19 https://doi.org/10.1016/j.jnt.2014.01.008
20 https://doi.org/10.1016/j.jnt.2016.05.012
21 https://doi.org/10.1017/s0027763000010643
22 https://doi.org/10.1017/s0027763000015932
23 https://doi.org/10.1090/coll/064
24 https://doi.org/10.1215/s0012-7094-04-12513-8
25 https://doi.org/10.1515/crelle.2006.034
26 https://doi.org/10.1515/crll.1977.293-294.143
27 https://doi.org/10.2140/ant.2008.2.573
28 https://doi.org/10.4007/annals.2011.173.2.8
29 https://doi.org/10.4064/aa170905-7-3
30 https://doi.org/10.4310/pamq.2008.v4.n4.a15
31 schema:datePublished 2019-03
32 schema:datePublishedReg 2019-03-01
33 schema:description Lagarias and Rhoades generalized harmonic Maass forms by considering forms which are annihilated by a number of iterations of the action of the ξ-operator. In our previous work, we considered polyharmonic weak Maass forms by allowing the exponential growth at cusps, and constructed a basis of the space of such forms. This paper focuses on the case of half-integral weight. We construct a basis as an analogue of our work, and give arithmetic formulas for the Fourier coefficients in terms of traces of CM values and cycle integrals of polyharmonic weak Maass forms. These results put the known results into a common framework.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N93392832d307416694b7c306ac7dd36a
38 N9d214660654a4587b38d9c56a9580ab3
39 sg:journal.1053185
40 schema:name Traces of CM values and cycle integrals of polyharmonic Maass forms
41 schema:pagination 8
42 schema:productId N1305e9e684454657a1e70b25e2495d3f
43 N6c185c18b5a54d24920656234db34001
44 Na6aa49fb953946dc8551dda630726053
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110758703
46 https://doi.org/10.1007/s40993-018-0148-4
47 schema:sdDatePublished 2019-04-11T08:25
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N3048617c3e5b44aaa32e4168d7885083
50 schema:url https://link.springer.com/10.1007%2Fs40993-018-0148-4
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N1305e9e684454657a1e70b25e2495d3f schema:name readcube_id
55 schema:value 2452a6952643eae544574542d98669713c9ae0e29d6c639025d172b716700298
56 rdf:type schema:PropertyValue
57 N3048617c3e5b44aaa32e4168d7885083 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N6c185c18b5a54d24920656234db34001 schema:name doi
60 schema:value 10.1007/s40993-018-0148-4
61 rdf:type schema:PropertyValue
62 N724546e92993404db6eb63432a8c880c rdf:first sg:person.015053254646.55
63 rdf:rest rdf:nil
64 N93392832d307416694b7c306ac7dd36a schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 N9d214660654a4587b38d9c56a9580ab3 schema:volumeNumber 5
67 rdf:type schema:PublicationVolume
68 Na6aa49fb953946dc8551dda630726053 schema:name dimensions_id
69 schema:value pub.1110758703
70 rdf:type schema:PropertyValue
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
75 schema:name Pure Mathematics
76 rdf:type schema:DefinedTerm
77 sg:journal.1053185 schema:issn 2363-9555
78 2522-0160
79 schema:name Research in Number Theory
80 rdf:type schema:Periodical
81 sg:person.015053254646.55 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
82 schema:familyName Matsusaka
83 schema:givenName Toshiki
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053254646.55
85 rdf:type schema:Person
86 sg:pub.10.1007/978-1-4612-0909-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050140295
87 https://doi.org/10.1007/978-1-4612-0909-6
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/978-3-642-48039-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033030863
90 https://doi.org/10.1007/978-3-642-48039-3
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/978-3-662-11761-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026602992
93 https://doi.org/10.1007/978-3-662-11761-3
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf01390005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022160824
96 https://doi.org/10.1007/bf01390005
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf01455989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018275843
99 https://doi.org/10.1007/bf01455989
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf01458081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026477938
102 https://doi.org/10.1007/bf01458081
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s11139-013-9544-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010561651
105 https://doi.org/10.1007/s11139-013-9544-5
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11139-015-9729-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041548332
108 https://doi.org/10.1007/s11139-015-9729-1
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s40687-018-0138-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101901152
111 https://doi.org/10.1007/s40687-018-0138-0
112 rdf:type schema:CreativeWork
113 sg:pub.10.1186/2197-9847-1-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037077049
114 https://doi.org/10.1186/2197-9847-1-6
115 rdf:type schema:CreativeWork
116 https://app.dimensions.ai/details/publication/pub.1026602992 schema:CreativeWork
117 https://doi.org/10.1016/j.aim.2012.09.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030215212
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.aim.2018.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101032485
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jmaa.2018.08.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106381539
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jnt.2013.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022433624
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jnt.2014.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017091168
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jnt.2016.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006081427
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1017/s0027763000010643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031511455
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1017/s0027763000015932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038401870
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1090/coll/064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103642916
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1215/s0012-7094-04-12513-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415475
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1515/crelle.2006.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024362631
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1515/crll.1977.293-294.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048247473
140 rdf:type schema:CreativeWork
141 https://doi.org/10.2140/ant.2008.2.573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069058770
142 rdf:type schema:CreativeWork
143 https://doi.org/10.4007/annals.2011.173.2.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071867322
144 rdf:type schema:CreativeWork
145 https://doi.org/10.4064/aa170905-7-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104693267
146 rdf:type schema:CreativeWork
147 https://doi.org/10.4310/pamq.2008.v4.n4.a15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072463555
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.177174.3 schema:alternateName Kyushu University
150 schema:name Graduate School of Mathematics, Kyushu University, Motooka 744, Nishi-ku, 819-0395, Fukuoka, Japan
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...