Modular invariants for genus 3 hyperelliptic curves View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Sorina Ionica, Pınar Kılıçer, Kristin Lauter, Elisa Lorenzo García, Adelina Mânzăţeanu, Maike Massierer, Christelle Vincent

ABSTRACT

In this article we prove an analogue of a theorem of Lachaud, Ritzenthaler, and Zykin, which allows us to connect invariants of binary octics to Siegel modular forms of genus 3. We use this connection to show that certain modular functions, when restricted to the hyperelliptic locus, assume values whose denominators are products of powers of primes of bad reduction for the associated hyperelliptic curves. We illustrate our theorem with explicit computations. This work is motivated by the study of the values of these modular functions at CM points of the Siegel upper half-space, which, if their denominators are known, can be used to effectively compute models of (hyperelliptic, in our case) curves with CM. More... »

PAGES

9

References to SciGraph publications

  • 1994-05. On Teichmüller modular forms in MATHEMATISCHE ANNALEN
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40993-018-0146-6

    DOI

    http://dx.doi.org/10.1007/s40993-018-0146-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111058896


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Picardie Jules Verne", 
              "id": "https://www.grid.ac/institutes/grid.11162.35", 
              "name": [
                "Laboratoire MIS, Universit\u00e9 de Picardie Jules Verne, 33 Rue Saint Leu, 80039, Amiens, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ionica", 
            "givenName": "Sorina", 
            "id": "sg:person.015457125531.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015457125531.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Groningen", 
              "id": "https://www.grid.ac/institutes/grid.4830.f", 
              "name": [
                "Johann Bernoulli Instituut voor Wiskunde en Informatica, Rijksuniversiteit Groningen, Nijenborgh 9, 9747 AG, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "K\u0131l\u0131\u00e7er", 
            "givenName": "P\u0131nar", 
            "id": "sg:person.015475445244.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015475445244.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Microsoft (United States)", 
              "id": "https://www.grid.ac/institutes/grid.419815.0", 
              "name": [
                "Microsoft Research, One Redmond Way, 98052, Redmond, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lauter", 
            "givenName": "Kristin", 
            "id": "sg:person.0772776410.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772776410.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Rennes 1", 
              "id": "https://www.grid.ac/institutes/grid.410368.8", 
              "name": [
                "Laboratoire IRMAR, Universit\u00e9 de Rennes 1, Campus de Beaulieu, 35042, Rennes Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lorenzo Garc\u00eda", 
            "givenName": "Elisa", 
            "id": "sg:person.013301031075.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301031075.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bristol", 
              "id": "https://www.grid.ac/institutes/grid.5337.2", 
              "name": [
                "Institute of Science and Technology Austria, School of Mathematics, University of Bristol, BS8 1JR, Bristol, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "M\u00e2nz\u0103\u0163eanu", 
            "givenName": "Adelina", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "UNSW Australia", 
              "id": "https://www.grid.ac/institutes/grid.1005.4", 
              "name": [
                "School of Mathematics and Statistics, University of New South Wales, 2052, Sydney, NSW, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Massierer", 
            "givenName": "Maike", 
            "id": "sg:person.013113067732.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113067732.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Vermont", 
              "id": "https://www.grid.ac/institutes/grid.59062.38", 
              "name": [
                "Department of Mathematics and Statistics, University of Vermont, 16 Colchester Avenue, 05401, Burlington, VT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vincent", 
            "givenName": "Christelle", 
            "id": "sg:person.011633371557.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011633371557.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1006/jnth.1999.2501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011445771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01459809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016497948", 
              "https://doi.org/10.1007/bf01459809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01459809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016497948", 
              "https://doi.org/10.1007/bf01459809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1994-1195511-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020120488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jalgebra.2012.07.054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021395348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/s1461157016000322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022332361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jnth.1996.0156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025136764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1353/ajm.2000.0046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027099947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0017089516000057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054784527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0017089516000057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054784527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-94-07634-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064420042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2373243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069899823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2373415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069899976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2374517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069900900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2374959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069901251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cjm-1991-061-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072267509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/mrl.2010.v17.n2.a11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072462785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5802/aif.2264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073138036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24033/bsmf.1789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083660763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/9781400883943", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096912788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/aa170227-16-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105596161"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "In this article we prove an analogue of a theorem of Lachaud, Ritzenthaler, and Zykin, which allows us to connect invariants of binary octics to Siegel modular forms of genus 3. We use this connection to show that certain modular functions, when restricted to the hyperelliptic locus, assume values whose denominators are products of powers of primes of bad reduction for the associated hyperelliptic curves. We illustrate our theorem with explicit computations. This work is motivated by the study of the values of these modular functions at CM points of the Siegel upper half-space, which, if their denominators are known, can be used to effectively compute models of (hyperelliptic, in our case) curves with CM.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40993-018-0146-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1053185", 
            "issn": [
              "2522-0160", 
              "2363-9555"
            ], 
            "name": "Research in Number Theory", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "name": "Modular invariants for genus 3 hyperelliptic curves", 
        "pagination": "9", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "abe32fee9193ab14ded0970f4cceb8d489d284e6dfe61fdb20b43f0de771b81e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40993-018-0146-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111058896"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40993-018-0146-6", 
          "https://app.dimensions.ai/details/publication/pub.1111058896"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000310_0000000310/records_90730_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs40993-018-0146-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0146-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0146-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0146-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0146-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    178 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40993-018-0146-6 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N6ac7e2516dab4fa4a0b04d5096114995
    4 schema:citation sg:pub.10.1007/bf01459809
    5 https://doi.org/10.1006/jnth.1996.0156
    6 https://doi.org/10.1006/jnth.1999.2501
    7 https://doi.org/10.1016/j.jalgebra.2012.07.054
    8 https://doi.org/10.1017/s0017089516000057
    9 https://doi.org/10.1090/s0002-9947-1994-1195511-x
    10 https://doi.org/10.1112/s1461157016000322
    11 https://doi.org/10.1215/s0012-7094-94-07634-5
    12 https://doi.org/10.1353/ajm.2000.0046
    13 https://doi.org/10.1515/9781400883943
    14 https://doi.org/10.2307/2373243
    15 https://doi.org/10.2307/2373415
    16 https://doi.org/10.2307/2374517
    17 https://doi.org/10.2307/2374959
    18 https://doi.org/10.24033/bsmf.1789
    19 https://doi.org/10.4064/aa170227-16-3
    20 https://doi.org/10.4153/cjm-1991-061-x
    21 https://doi.org/10.4310/mrl.2010.v17.n2.a11
    22 https://doi.org/10.5802/aif.2264
    23 schema:datePublished 2019-03
    24 schema:datePublishedReg 2019-03-01
    25 schema:description In this article we prove an analogue of a theorem of Lachaud, Ritzenthaler, and Zykin, which allows us to connect invariants of binary octics to Siegel modular forms of genus 3. We use this connection to show that certain modular functions, when restricted to the hyperelliptic locus, assume values whose denominators are products of powers of primes of bad reduction for the associated hyperelliptic curves. We illustrate our theorem with explicit computations. This work is motivated by the study of the values of these modular functions at CM points of the Siegel upper half-space, which, if their denominators are known, can be used to effectively compute models of (hyperelliptic, in our case) curves with CM.
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree true
    29 schema:isPartOf Na26562d6265945a6aa098fb2341b4721
    30 Ndd5574f1e1b74371b2c8d8b9dd36d0ef
    31 sg:journal.1053185
    32 schema:name Modular invariants for genus 3 hyperelliptic curves
    33 schema:pagination 9
    34 schema:productId N081f34d4d9974b5f9f82db6f803ecdba
    35 N8c489008db064f249163c586be06b89f
    36 Nea029fe12cc642aa81d477cb5fb0c57c
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111058896
    38 https://doi.org/10.1007/s40993-018-0146-6
    39 schema:sdDatePublished 2019-04-11T08:33
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N84cfa89ec94440068820bf33238acd7d
    42 schema:url https://link.springer.com/10.1007%2Fs40993-018-0146-6
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N081f34d4d9974b5f9f82db6f803ecdba schema:name doi
    47 schema:value 10.1007/s40993-018-0146-6
    48 rdf:type schema:PropertyValue
    49 N37fd1983c9ec4a0e8915e20aa9d46014 rdf:first sg:person.0772776410.54
    50 rdf:rest N4aae26d0668e41cb87c57c4851fbee81
    51 N4aae26d0668e41cb87c57c4851fbee81 rdf:first sg:person.013301031075.25
    52 rdf:rest Na7b678e0306d478cb49353a9b13081cc
    53 N69cdcc9d10344d98ab7ddc522bc696b0 rdf:first sg:person.011633371557.23
    54 rdf:rest rdf:nil
    55 N6ac7e2516dab4fa4a0b04d5096114995 rdf:first sg:person.015457125531.07
    56 rdf:rest Nac65248fa1f542b6a7a766bba18a47b7
    57 N84cfa89ec94440068820bf33238acd7d schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 N8c489008db064f249163c586be06b89f schema:name dimensions_id
    60 schema:value pub.1111058896
    61 rdf:type schema:PropertyValue
    62 N8ee40c46fa04408bab7648ed5f7ad877 schema:affiliation https://www.grid.ac/institutes/grid.5337.2
    63 schema:familyName Mânzăţeanu
    64 schema:givenName Adelina
    65 rdf:type schema:Person
    66 N9f0e504056594f84b269aa21a5bc2192 rdf:first sg:person.013113067732.89
    67 rdf:rest N69cdcc9d10344d98ab7ddc522bc696b0
    68 Na26562d6265945a6aa098fb2341b4721 schema:volumeNumber 5
    69 rdf:type schema:PublicationVolume
    70 Na7b678e0306d478cb49353a9b13081cc rdf:first N8ee40c46fa04408bab7648ed5f7ad877
    71 rdf:rest N9f0e504056594f84b269aa21a5bc2192
    72 Nac65248fa1f542b6a7a766bba18a47b7 rdf:first sg:person.015475445244.86
    73 rdf:rest N37fd1983c9ec4a0e8915e20aa9d46014
    74 Ndd5574f1e1b74371b2c8d8b9dd36d0ef schema:issueNumber 1
    75 rdf:type schema:PublicationIssue
    76 Nea029fe12cc642aa81d477cb5fb0c57c schema:name readcube_id
    77 schema:value abe32fee9193ab14ded0970f4cceb8d489d284e6dfe61fdb20b43f0de771b81e
    78 rdf:type schema:PropertyValue
    79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Mathematical Sciences
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Pure Mathematics
    84 rdf:type schema:DefinedTerm
    85 sg:journal.1053185 schema:issn 2363-9555
    86 2522-0160
    87 schema:name Research in Number Theory
    88 rdf:type schema:Periodical
    89 sg:person.011633371557.23 schema:affiliation https://www.grid.ac/institutes/grid.59062.38
    90 schema:familyName Vincent
    91 schema:givenName Christelle
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011633371557.23
    93 rdf:type schema:Person
    94 sg:person.013113067732.89 schema:affiliation https://www.grid.ac/institutes/grid.1005.4
    95 schema:familyName Massierer
    96 schema:givenName Maike
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113067732.89
    98 rdf:type schema:Person
    99 sg:person.013301031075.25 schema:affiliation https://www.grid.ac/institutes/grid.410368.8
    100 schema:familyName Lorenzo García
    101 schema:givenName Elisa
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301031075.25
    103 rdf:type schema:Person
    104 sg:person.015457125531.07 schema:affiliation https://www.grid.ac/institutes/grid.11162.35
    105 schema:familyName Ionica
    106 schema:givenName Sorina
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015457125531.07
    108 rdf:type schema:Person
    109 sg:person.015475445244.86 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
    110 schema:familyName Kılıçer
    111 schema:givenName Pınar
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015475445244.86
    113 rdf:type schema:Person
    114 sg:person.0772776410.54 schema:affiliation https://www.grid.ac/institutes/grid.419815.0
    115 schema:familyName Lauter
    116 schema:givenName Kristin
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772776410.54
    118 rdf:type schema:Person
    119 sg:pub.10.1007/bf01459809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016497948
    120 https://doi.org/10.1007/bf01459809
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1006/jnth.1996.0156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025136764
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1006/jnth.1999.2501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011445771
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.jalgebra.2012.07.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021395348
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1017/s0017089516000057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054784527
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1090/s0002-9947-1994-1195511-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020120488
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1112/s1461157016000322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022332361
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1215/s0012-7094-94-07634-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064420042
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1353/ajm.2000.0046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027099947
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1515/9781400883943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096912788
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.2307/2373243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899823
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.2307/2373415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899976
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.2307/2374517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069900900
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.2307/2374959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069901251
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.24033/bsmf.1789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083660763
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.4064/aa170227-16-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105596161
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.4153/cjm-1991-061-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1072267509
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.4310/mrl.2010.v17.n2.a11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072462785
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.5802/aif.2264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073138036
    157 rdf:type schema:CreativeWork
    158 https://www.grid.ac/institutes/grid.1005.4 schema:alternateName UNSW Australia
    159 schema:name School of Mathematics and Statistics, University of New South Wales, 2052, Sydney, NSW, Australia
    160 rdf:type schema:Organization
    161 https://www.grid.ac/institutes/grid.11162.35 schema:alternateName University of Picardie Jules Verne
    162 schema:name Laboratoire MIS, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039, Amiens, France
    163 rdf:type schema:Organization
    164 https://www.grid.ac/institutes/grid.410368.8 schema:alternateName University of Rennes 1
    165 schema:name Laboratoire IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042, Rennes Cedex, France
    166 rdf:type schema:Organization
    167 https://www.grid.ac/institutes/grid.419815.0 schema:alternateName Microsoft (United States)
    168 schema:name Microsoft Research, One Redmond Way, 98052, Redmond, WA, USA
    169 rdf:type schema:Organization
    170 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
    171 schema:name Johann Bernoulli Instituut voor Wiskunde en Informatica, Rijksuniversiteit Groningen, Nijenborgh 9, 9747 AG, Groningen, The Netherlands
    172 rdf:type schema:Organization
    173 https://www.grid.ac/institutes/grid.5337.2 schema:alternateName University of Bristol
    174 schema:name Institute of Science and Technology Austria, School of Mathematics, University of Bristol, BS8 1JR, Bristol, UK
    175 rdf:type schema:Organization
    176 https://www.grid.ac/institutes/grid.59062.38 schema:alternateName University of Vermont
    177 schema:name Department of Mathematics and Statistics, University of Vermont, 16 Colchester Avenue, 05401, Burlington, VT, USA
    178 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...