A note on multivariable (φ,Γ)-modules View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Elmar Grosse-Klönne

ABSTRACT

Let F/Qp be a finite field extension, let k be a field of characteristic p. Fix a Lubin Tate group Φ for F and let Γ∙=Γ×⋯×Γ with Γ=OF× act on k[[t1,…,tn]][∏iti-1] by letting γi (in the i-th factor Γ) act on ti by insertion of ti into the power series attached to γi by Φ. We show that k[[t1,…,tn]][∏iti-1] admits no non-trivial ideal stable under Γ∙, thereby generalizing a result of Zábrádi (who had treated the case where Φ is the multiplicative group). We then discuss applications to (φ,Γ)-modules over k[[t1,…,tn]][∏iti-1]. More... »

PAGES

6

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40993-018-0144-8

DOI

http://dx.doi.org/10.1007/s40993-018-0144-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110105525


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Humboldt University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.7468.d", 
          "name": [
            "Humboldt-Universit\u00e4t zu Berlin, Institut f\u00fcr Mathematik, Rudower Chaussee 25, 12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grosse-Kl\u00f6nne", 
        "givenName": "Elmar", 
        "id": "sg:person.011740433767.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011740433767.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-319-45032-2_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009296710", 
          "https://doi.org/10.1007/978-3-319-45032-2_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00029-016-0259-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028816617", 
          "https://doi.org/10.1007/s00029-016-0259-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00029-016-0259-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028816617", 
          "https://doi.org/10.1007/s00029-016-0259-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/ant.2013.7.2545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069059053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/ant.2015.9.2241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069059201"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Let F/Qp be a finite field extension, let k be a field of characteristic p. Fix a Lubin Tate group \u03a6 for F and let \u0393\u2219=\u0393\u00d7\u22ef\u00d7\u0393 with \u0393=OF\u00d7 act on k[[t1,\u2026,tn]][\u220fiti-1] by letting \u03b3i (in the i-th factor \u0393) act on ti by insertion of ti into the power series attached to \u03b3i by \u03a6. We show that k[[t1,\u2026,tn]][\u220fiti-1] admits no non-trivial ideal stable under \u0393\u2219, thereby generalizing a result of Z\u00e1br\u00e1di (who had treated the case where \u03a6 is the multiplicative group). We then discuss applications to (\u03c6,\u0393)-modules over k[[t1,\u2026,tn]][\u220fiti-1].", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/s40993-018-0144-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053185", 
        "issn": [
          "2522-0160", 
          "2363-9555"
        ], 
        "name": "Research in Number Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "A note on multivariable (\u03c6,\u0393)-modules", 
    "pagination": "6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2e4239a364312d844053c57231654832f46a9a0de1c4b27ef0b4b34f1a1a89ff"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40993-018-0144-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110105525"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40993-018-0144-8", 
      "https://app.dimensions.ai/details/publication/pub.1110105525"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000293_0000000293/records_12017_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40993-018-0144-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0144-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0144-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0144-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0144-8'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40993-018-0144-8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N8f89d03cbe4c468eb4edbf9def628c95
4 schema:citation sg:pub.10.1007/978-3-319-45032-2_12
5 sg:pub.10.1007/s00029-016-0259-5
6 https://doi.org/10.2140/ant.2013.7.2545
7 https://doi.org/10.2140/ant.2015.9.2241
8 schema:datePublished 2019-03
9 schema:datePublishedReg 2019-03-01
10 schema:description Let F/Qp be a finite field extension, let k be a field of characteristic p. Fix a Lubin Tate group Φ for F and let Γ∙=Γ×⋯×Γ with Γ=OF× act on k[[t1,…,tn]][∏iti-1] by letting γi (in the i-th factor Γ) act on ti by insertion of ti into the power series attached to γi by Φ. We show that k[[t1,…,tn]][∏iti-1] admits no non-trivial ideal stable under Γ∙, thereby generalizing a result of Zábrádi (who had treated the case where Φ is the multiplicative group). We then discuss applications to (φ,Γ)-modules over k[[t1,…,tn]][∏iti-1].
11 schema:genre non_research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N57472b701cf64962ac594d81a008d845
15 N9732c99e1ac5478cb9431dcf2a44d602
16 sg:journal.1053185
17 schema:name A note on multivariable (φ,Γ)-modules
18 schema:pagination 6
19 schema:productId N9ed3154a21dd46969a87ecb81bb52821
20 Na88f2d6d1add4ca6ad8b6ab0f77faa84
21 Naf8a965a38ef4365b5dad85b7531083d
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110105525
23 https://doi.org/10.1007/s40993-018-0144-8
24 schema:sdDatePublished 2019-04-11T08:23
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N30d9bbfdab824eb78eac720fa675e807
27 schema:url https://link.springer.com/10.1007%2Fs40993-018-0144-8
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N30d9bbfdab824eb78eac720fa675e807 schema:name Springer Nature - SN SciGraph project
32 rdf:type schema:Organization
33 N57472b701cf64962ac594d81a008d845 schema:volumeNumber 5
34 rdf:type schema:PublicationVolume
35 N8f89d03cbe4c468eb4edbf9def628c95 rdf:first sg:person.011740433767.26
36 rdf:rest rdf:nil
37 N9732c99e1ac5478cb9431dcf2a44d602 schema:issueNumber 1
38 rdf:type schema:PublicationIssue
39 N9ed3154a21dd46969a87ecb81bb52821 schema:name dimensions_id
40 schema:value pub.1110105525
41 rdf:type schema:PropertyValue
42 Na88f2d6d1add4ca6ad8b6ab0f77faa84 schema:name readcube_id
43 schema:value 2e4239a364312d844053c57231654832f46a9a0de1c4b27ef0b4b34f1a1a89ff
44 rdf:type schema:PropertyValue
45 Naf8a965a38ef4365b5dad85b7531083d schema:name doi
46 schema:value 10.1007/s40993-018-0144-8
47 rdf:type schema:PropertyValue
48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
49 schema:name Mathematical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
52 schema:name Pure Mathematics
53 rdf:type schema:DefinedTerm
54 sg:journal.1053185 schema:issn 2363-9555
55 2522-0160
56 schema:name Research in Number Theory
57 rdf:type schema:Periodical
58 sg:person.011740433767.26 schema:affiliation https://www.grid.ac/institutes/grid.7468.d
59 schema:familyName Grosse-Klönne
60 schema:givenName Elmar
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011740433767.26
62 rdf:type schema:Person
63 sg:pub.10.1007/978-3-319-45032-2_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009296710
64 https://doi.org/10.1007/978-3-319-45032-2_12
65 rdf:type schema:CreativeWork
66 sg:pub.10.1007/s00029-016-0259-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028816617
67 https://doi.org/10.1007/s00029-016-0259-5
68 rdf:type schema:CreativeWork
69 https://doi.org/10.2140/ant.2013.7.2545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069059053
70 rdf:type schema:CreativeWork
71 https://doi.org/10.2140/ant.2015.9.2241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069059201
72 rdf:type schema:CreativeWork
73 https://www.grid.ac/institutes/grid.7468.d schema:alternateName Humboldt University of Berlin
74 schema:name Humboldt-Universität zu Berlin, Institut für Mathematik, Rudower Chaussee 25, 12489, Berlin, Germany
75 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...