An ℓ-p switch trick to obtain a new proof of a criterion for arithmetic equivalence View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Tristram Bogart, Guillermo Mantilla-Soler

ABSTRACT

Two number fields are called arithmetically equivalent if they have the same Dedekind zeta function. In the 1970s Perlis showed that this is equivalent to the condition that for almost every rational prime ℓ the arithmetic type of ℓ is the same in each field. In the 1990s Perlis and Stuart gave an unexpected characterization for arithmetic equivalence; they showed that to be arithmetically equivalent it is enough for almost every prime ℓ to have the same number of prime factors in each field. Here, using an ℓ-p switch trick, we provide an alternative proof of that fact based on a classical elementary result of Smith from the 1870s. More... »

PAGES

1

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40993-018-0139-5

DOI

http://dx.doi.org/10.1007/s40993-018-0139-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107849555


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universidad de Los Andes", 
          "id": "https://www.grid.ac/institutes/grid.7247.6", 
          "name": [
            "Department of Mathematics, Universidad de los Andes, Bogot\u00e1, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bogart", 
        "givenName": "Tristram", 
        "id": "sg:person.011504445413.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504445413.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad de Los Andes", 
          "id": "https://www.grid.ac/institutes/grid.7247.6", 
          "name": [
            "Department of Mathematics, Universidad de los Andes, Bogot\u00e1, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mantilla-Soler", 
        "givenName": "Guillermo", 
        "id": "sg:person.015521161623.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015521161623.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4684-9458-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007326052", 
          "https://doi.org/10.1007/978-1-4684-9458-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9458-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007326052", 
          "https://doi.org/10.1007/978-1-4684-9458-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-314x(77)90070-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044075606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s1-7.1.208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047141936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jnth.1995.1092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050013541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cmb-2014-036-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072273324"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Two number fields are called arithmetically equivalent if they have the same Dedekind zeta function. In the 1970s Perlis showed that this is equivalent to the condition that for almost every rational prime \u2113 the arithmetic type of \u2113 is the same in each field. In the 1990s Perlis and Stuart gave an unexpected characterization for arithmetic equivalence; they showed that to be arithmetically equivalent it is enough for almost every prime \u2113 to have the same number of prime factors in each field. Here, using an \u2113-p switch trick, we provide an alternative proof of that fact based on a classical elementary result of Smith from the 1870s.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/s40993-018-0139-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053185", 
        "issn": [
          "2522-0160", 
          "2363-9555"
        ], 
        "name": "Research in Number Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "An \u2113-p switch trick to obtain a new proof of a criterion for arithmetic equivalence", 
    "pagination": "1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "89f83884888ae6c732d0d2849eaffa9b2a8d1d09b359eccf7030bbcfeb9ca821"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40993-018-0139-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107849555"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40993-018-0139-5", 
      "https://app.dimensions.ai/details/publication/pub.1107849555"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000298_0000000298/records_26536_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40993-018-0139-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0139-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0139-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0139-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0139-5'


 

This table displays all metadata directly associated to this object as RDF triples.

84 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40993-018-0139-5 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N86419e96a04e4943abaa3c447eef6e50
4 schema:citation sg:pub.10.1007/978-1-4684-9458-7
5 https://doi.org/10.1006/jnth.1995.1092
6 https://doi.org/10.1016/0022-314x(77)90070-1
7 https://doi.org/10.1112/plms/s1-7.1.208
8 https://doi.org/10.4153/cmb-2014-036-7
9 schema:datePublished 2019-03
10 schema:datePublishedReg 2019-03-01
11 schema:description Two number fields are called arithmetically equivalent if they have the same Dedekind zeta function. In the 1970s Perlis showed that this is equivalent to the condition that for almost every rational prime ℓ the arithmetic type of ℓ is the same in each field. In the 1990s Perlis and Stuart gave an unexpected characterization for arithmetic equivalence; they showed that to be arithmetically equivalent it is enough for almost every prime ℓ to have the same number of prime factors in each field. Here, using an ℓ-p switch trick, we provide an alternative proof of that fact based on a classical elementary result of Smith from the 1870s.
12 schema:genre non_research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N8776d2a9b4334375979b0bf4d34c4d6d
16 Nbe68662cf38944faaee5efc32fe2f37b
17 sg:journal.1053185
18 schema:name An ℓ-p switch trick to obtain a new proof of a criterion for arithmetic equivalence
19 schema:pagination 1
20 schema:productId N0734c7c2954c41b5afb86ea61cf7b4fd
21 N65049315bad14f1fa65462fd8992e3b7
22 N856b75e66cc749598c7888227ddaf09f
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107849555
24 https://doi.org/10.1007/s40993-018-0139-5
25 schema:sdDatePublished 2019-04-11T08:25
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N7ecb9911cbfc4ab3843e6e32c0163928
28 schema:url https://link.springer.com/10.1007%2Fs40993-018-0139-5
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N0734c7c2954c41b5afb86ea61cf7b4fd schema:name dimensions_id
33 schema:value pub.1107849555
34 rdf:type schema:PropertyValue
35 N15ec7d430bd9421c9db4392625e63467 rdf:first sg:person.015521161623.22
36 rdf:rest rdf:nil
37 N65049315bad14f1fa65462fd8992e3b7 schema:name readcube_id
38 schema:value 89f83884888ae6c732d0d2849eaffa9b2a8d1d09b359eccf7030bbcfeb9ca821
39 rdf:type schema:PropertyValue
40 N7ecb9911cbfc4ab3843e6e32c0163928 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N856b75e66cc749598c7888227ddaf09f schema:name doi
43 schema:value 10.1007/s40993-018-0139-5
44 rdf:type schema:PropertyValue
45 N86419e96a04e4943abaa3c447eef6e50 rdf:first sg:person.011504445413.92
46 rdf:rest N15ec7d430bd9421c9db4392625e63467
47 N8776d2a9b4334375979b0bf4d34c4d6d schema:issueNumber 1
48 rdf:type schema:PublicationIssue
49 Nbe68662cf38944faaee5efc32fe2f37b schema:volumeNumber 5
50 rdf:type schema:PublicationVolume
51 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
52 schema:name Biological Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
55 schema:name Biochemistry and Cell Biology
56 rdf:type schema:DefinedTerm
57 sg:journal.1053185 schema:issn 2363-9555
58 2522-0160
59 schema:name Research in Number Theory
60 rdf:type schema:Periodical
61 sg:person.011504445413.92 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
62 schema:familyName Bogart
63 schema:givenName Tristram
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504445413.92
65 rdf:type schema:Person
66 sg:person.015521161623.22 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
67 schema:familyName Mantilla-Soler
68 schema:givenName Guillermo
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015521161623.22
70 rdf:type schema:Person
71 sg:pub.10.1007/978-1-4684-9458-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007326052
72 https://doi.org/10.1007/978-1-4684-9458-7
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1006/jnth.1995.1092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050013541
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1016/0022-314x(77)90070-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044075606
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1112/plms/s1-7.1.208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047141936
79 rdf:type schema:CreativeWork
80 https://doi.org/10.4153/cmb-2014-036-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072273324
81 rdf:type schema:CreativeWork
82 https://www.grid.ac/institutes/grid.7247.6 schema:alternateName Universidad de Los Andes
83 schema:name Department of Mathematics, Universidad de los Andes, Bogotá, Colombia
84 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...