An ℓ-p switch trick to obtain a new proof of a criterion for arithmetic equivalence View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Tristram Bogart, Guillermo Mantilla-Soler

ABSTRACT

Two number fields are called arithmetically equivalent if they have the same Dedekind zeta function. In the 1970s Perlis showed that this is equivalent to the condition that for almost every rational prime ℓ the arithmetic type of ℓ is the same in each field. In the 1990s Perlis and Stuart gave an unexpected characterization for arithmetic equivalence; they showed that to be arithmetically equivalent it is enough for almost every prime ℓ to have the same number of prime factors in each field. Here, using an ℓ-p switch trick, we provide an alternative proof of that fact based on a classical elementary result of Smith from the 1870s. More... »

PAGES

1

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40993-018-0139-5

DOI

http://dx.doi.org/10.1007/s40993-018-0139-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107849555


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universidad de Los Andes", 
          "id": "https://www.grid.ac/institutes/grid.7247.6", 
          "name": [
            "Department of Mathematics, Universidad de los Andes, Bogot\u00e1, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bogart", 
        "givenName": "Tristram", 
        "id": "sg:person.011504445413.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504445413.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad de Los Andes", 
          "id": "https://www.grid.ac/institutes/grid.7247.6", 
          "name": [
            "Department of Mathematics, Universidad de los Andes, Bogot\u00e1, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mantilla-Soler", 
        "givenName": "Guillermo", 
        "id": "sg:person.015521161623.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015521161623.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4684-9458-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007326052", 
          "https://doi.org/10.1007/978-1-4684-9458-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9458-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007326052", 
          "https://doi.org/10.1007/978-1-4684-9458-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-314x(77)90070-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044075606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s1-7.1.208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047141936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jnth.1995.1092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050013541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cmb-2014-036-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072273324"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Two number fields are called arithmetically equivalent if they have the same Dedekind zeta function. In the 1970s Perlis showed that this is equivalent to the condition that for almost every rational prime \u2113 the arithmetic type of \u2113 is the same in each field. In the 1990s Perlis and Stuart gave an unexpected characterization for arithmetic equivalence; they showed that to be arithmetically equivalent it is enough for almost every prime \u2113 to have the same number of prime factors in each field. Here, using an \u2113-p switch trick, we provide an alternative proof of that fact based on a classical elementary result of Smith from the 1870s.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/s40993-018-0139-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053185", 
        "issn": [
          "2522-0160", 
          "2363-9555"
        ], 
        "name": "Research in Number Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "An \u2113-p switch trick to obtain a new proof of a criterion for arithmetic equivalence", 
    "pagination": "1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "89f83884888ae6c732d0d2849eaffa9b2a8d1d09b359eccf7030bbcfeb9ca821"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40993-018-0139-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107849555"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40993-018-0139-5", 
      "https://app.dimensions.ai/details/publication/pub.1107849555"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000298_0000000298/records_26536_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40993-018-0139-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0139-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0139-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0139-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0139-5'


 

This table displays all metadata directly associated to this object as RDF triples.

84 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40993-018-0139-5 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N444eb3ed475f4d7d9a871b5744887c1c
4 schema:citation sg:pub.10.1007/978-1-4684-9458-7
5 https://doi.org/10.1006/jnth.1995.1092
6 https://doi.org/10.1016/0022-314x(77)90070-1
7 https://doi.org/10.1112/plms/s1-7.1.208
8 https://doi.org/10.4153/cmb-2014-036-7
9 schema:datePublished 2019-03
10 schema:datePublishedReg 2019-03-01
11 schema:description Two number fields are called arithmetically equivalent if they have the same Dedekind zeta function. In the 1970s Perlis showed that this is equivalent to the condition that for almost every rational prime ℓ the arithmetic type of ℓ is the same in each field. In the 1990s Perlis and Stuart gave an unexpected characterization for arithmetic equivalence; they showed that to be arithmetically equivalent it is enough for almost every prime ℓ to have the same number of prime factors in each field. Here, using an ℓ-p switch trick, we provide an alternative proof of that fact based on a classical elementary result of Smith from the 1870s.
12 schema:genre non_research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N4b62a4cb108849fa801d027924de8135
16 N90a6f70faf774487aa529bb2622dd4ac
17 sg:journal.1053185
18 schema:name An ℓ-p switch trick to obtain a new proof of a criterion for arithmetic equivalence
19 schema:pagination 1
20 schema:productId N97bdbf885aef4be4b0390dc06fcd18de
21 Naca6ac41000041b09606a97c053486be
22 Nc214221dd7594f22a2bfa18ccb49c850
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107849555
24 https://doi.org/10.1007/s40993-018-0139-5
25 schema:sdDatePublished 2019-04-11T08:25
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N3e59087af6254426871e17a6c7c19a55
28 schema:url https://link.springer.com/10.1007%2Fs40993-018-0139-5
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N3e59087af6254426871e17a6c7c19a55 schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N444eb3ed475f4d7d9a871b5744887c1c rdf:first sg:person.011504445413.92
35 rdf:rest Nd799c4d78ff14f9a93fc8d84ac1e13bb
36 N4b62a4cb108849fa801d027924de8135 schema:volumeNumber 5
37 rdf:type schema:PublicationVolume
38 N90a6f70faf774487aa529bb2622dd4ac schema:issueNumber 1
39 rdf:type schema:PublicationIssue
40 N97bdbf885aef4be4b0390dc06fcd18de schema:name doi
41 schema:value 10.1007/s40993-018-0139-5
42 rdf:type schema:PropertyValue
43 Naca6ac41000041b09606a97c053486be schema:name readcube_id
44 schema:value 89f83884888ae6c732d0d2849eaffa9b2a8d1d09b359eccf7030bbcfeb9ca821
45 rdf:type schema:PropertyValue
46 Nc214221dd7594f22a2bfa18ccb49c850 schema:name dimensions_id
47 schema:value pub.1107849555
48 rdf:type schema:PropertyValue
49 Nd799c4d78ff14f9a93fc8d84ac1e13bb rdf:first sg:person.015521161623.22
50 rdf:rest rdf:nil
51 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
52 schema:name Biological Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
55 schema:name Biochemistry and Cell Biology
56 rdf:type schema:DefinedTerm
57 sg:journal.1053185 schema:issn 2363-9555
58 2522-0160
59 schema:name Research in Number Theory
60 rdf:type schema:Periodical
61 sg:person.011504445413.92 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
62 schema:familyName Bogart
63 schema:givenName Tristram
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504445413.92
65 rdf:type schema:Person
66 sg:person.015521161623.22 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
67 schema:familyName Mantilla-Soler
68 schema:givenName Guillermo
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015521161623.22
70 rdf:type schema:Person
71 sg:pub.10.1007/978-1-4684-9458-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007326052
72 https://doi.org/10.1007/978-1-4684-9458-7
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1006/jnth.1995.1092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050013541
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1016/0022-314x(77)90070-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044075606
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1112/plms/s1-7.1.208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047141936
79 rdf:type schema:CreativeWork
80 https://doi.org/10.4153/cmb-2014-036-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072273324
81 rdf:type schema:CreativeWork
82 https://www.grid.ac/institutes/grid.7247.6 schema:alternateName Universidad de Los Andes
83 schema:name Department of Mathematics, Universidad de los Andes, Bogotá, Colombia
84 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...