Exact formulas for invariants of Hilbert schemes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Nate Gillman, Xavier Gonzalez, Matthew Schoenbauer

ABSTRACT

A theorem of Göttsche establishes a connection between cohomological invariants of a complex projective surface S and corresponding invariants of the Hilbert scheme of n points on S. This relationship is encoded in certain infinite product q-series which are essentially modular forms. Here we make use of the circle method to arrive at exact formulas for certain specializations of these q-series, yielding convergent series for the signature and Euler characteristic of these Hilbert schemes. We also analyze the asymptotic and distributional properties of the q-series’ coefficients. More... »

PAGES

39

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40993-018-0132-z

DOI

http://dx.doi.org/10.1007/s40993-018-0132-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107125725


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wesleyan University", 
          "id": "https://www.grid.ac/institutes/grid.268117.b", 
          "name": [
            "Department of Mathematics & Computer Science, Wesleyan University, 06457, Middletown, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gillman", 
        "givenName": "Nate", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Mathematical Institute, University of Oxford, Oxford, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonzalez", 
        "givenName": "Xavier", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Notre Dame", 
          "id": "https://www.grid.ac/institutes/grid.131063.6", 
          "name": [
            "Department of Mathematics, University of Notre Dame, 46556, Notre Dame, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schoenbauer", 
        "givenName": "Matthew", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4614-0028-8_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000914152", 
          "https://doi.org/10.1007/978-1-4614-0028-8_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3849-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001329144", 
          "https://doi.org/10.1007/978-1-4757-3849-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3849-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001329144", 
          "https://doi.org/10.1007/978-1-4757-3849-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0073491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015425119", 
          "https://doi.org/10.1007/bfb0073491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0073491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015425119", 
          "https://doi.org/10.1007/bfb0073491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(96)00176-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035849060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1971-0272735-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041349137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-73892-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041757458", 
          "https://doi.org/10.1007/978-0-387-73892-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-73892-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041757458", 
          "https://doi.org/10.1007/978-0-387-73892-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0999-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047164045", 
          "https://doi.org/10.1007/978-1-4612-0999-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0999-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047164045", 
          "https://doi.org/10.1007/978-1-4612-0999-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-41-00854-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064416186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-99-09704-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064420497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1968973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2371313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069898033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/cntp.2015.v9.n2.a6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072459568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099322124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/coll/064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103642916"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "A theorem of G\u00f6ttsche establishes a connection between cohomological invariants of a complex projective surface S and corresponding invariants of the Hilbert scheme of n points on S. This relationship is encoded in certain infinite product q-series which are essentially modular forms. Here we make use of the circle method to arrive at exact formulas for certain specializations of these q-series, yielding convergent series for the signature and Euler characteristic of these Hilbert schemes. We also analyze the asymptotic and distributional properties of the q-series\u2019 coefficients.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40993-018-0132-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4893317", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1053185", 
        "issn": [
          "2522-0160", 
          "2363-9555"
        ], 
        "name": "Research in Number Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Exact formulas for invariants of Hilbert schemes", 
    "pagination": "39", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fb555c2b68572057875f41faf1fcdaa3db19068145065264b95232fc0a491091"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40993-018-0132-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107125725"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40993-018-0132-z", 
      "https://app.dimensions.ai/details/publication/pub.1107125725"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000572.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40993-018-0132-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0132-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0132-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0132-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0132-z'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40993-018-0132-z schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nff7d5e9d326d466abbcf3ab02167c9d2
4 schema:citation sg:pub.10.1007/978-0-387-73892-5
5 sg:pub.10.1007/978-1-4612-0999-7
6 sg:pub.10.1007/978-1-4614-0028-8_3
7 sg:pub.10.1007/978-1-4757-3849-0
8 sg:pub.10.1007/bfb0073491
9 https://doi.org/10.1016/0550-3213(96)00176-9
10 https://doi.org/10.1090/coll/064
11 https://doi.org/10.1090/s0002-9947-1971-0272735-1
12 https://doi.org/10.1215/s0012-7094-41-00854-2
13 https://doi.org/10.1215/s0012-7094-99-09704-1
14 https://doi.org/10.2307/1968973
15 https://doi.org/10.2307/2371313
16 https://doi.org/10.2307/2373167
17 https://doi.org/10.2307/2373210
18 https://doi.org/10.4171/025
19 https://doi.org/10.4310/cntp.2015.v9.n2.a6
20 schema:datePublished 2018-12
21 schema:datePublishedReg 2018-12-01
22 schema:description A theorem of Göttsche establishes a connection between cohomological invariants of a complex projective surface S and corresponding invariants of the Hilbert scheme of n points on S. This relationship is encoded in certain infinite product q-series which are essentially modular forms. Here we make use of the circle method to arrive at exact formulas for certain specializations of these q-series, yielding convergent series for the signature and Euler characteristic of these Hilbert schemes. We also analyze the asymptotic and distributional properties of the q-series’ coefficients.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N4ecbf43766c64f8bba0377eb3366cc42
27 N6c7573105a6d4261ba82e2ea6df8673f
28 sg:journal.1053185
29 schema:name Exact formulas for invariants of Hilbert schemes
30 schema:pagination 39
31 schema:productId N399dc73fbcd94c18b00651aee0f5829b
32 Nb053f4854a344c3497f1ab68a28e14f2
33 Ndb9433dd2f3f43198963dfb050ff80dd
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107125725
35 https://doi.org/10.1007/s40993-018-0132-z
36 schema:sdDatePublished 2019-04-10T16:51
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N964e9e22c8ad4d75ba3525b7fc35e257
39 schema:url https://link.springer.com/10.1007%2Fs40993-018-0132-z
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N399dc73fbcd94c18b00651aee0f5829b schema:name readcube_id
44 schema:value fb555c2b68572057875f41faf1fcdaa3db19068145065264b95232fc0a491091
45 rdf:type schema:PropertyValue
46 N4ecbf43766c64f8bba0377eb3366cc42 schema:volumeNumber 4
47 rdf:type schema:PublicationVolume
48 N6c7573105a6d4261ba82e2ea6df8673f schema:issueNumber 4
49 rdf:type schema:PublicationIssue
50 N6ced1e58f35b4114b10b22fd31294c06 schema:affiliation https://www.grid.ac/institutes/grid.268117.b
51 schema:familyName Gillman
52 schema:givenName Nate
53 rdf:type schema:Person
54 N85aad797a9244441ad0d4c107306bd7e rdf:first Nbe7ecf5c1cac4a3192f21a30156ac58b
55 rdf:rest Nd49307f9717a439f9a7c0cd3d8dc95c6
56 N964e9e22c8ad4d75ba3525b7fc35e257 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nb053f4854a344c3497f1ab68a28e14f2 schema:name dimensions_id
59 schema:value pub.1107125725
60 rdf:type schema:PropertyValue
61 Nbba0edb158f647c5800afce899d6007b schema:affiliation https://www.grid.ac/institutes/grid.131063.6
62 schema:familyName Schoenbauer
63 schema:givenName Matthew
64 rdf:type schema:Person
65 Nbe7ecf5c1cac4a3192f21a30156ac58b schema:affiliation https://www.grid.ac/institutes/grid.4991.5
66 schema:familyName Gonzalez
67 schema:givenName Xavier
68 rdf:type schema:Person
69 Nd49307f9717a439f9a7c0cd3d8dc95c6 rdf:first Nbba0edb158f647c5800afce899d6007b
70 rdf:rest rdf:nil
71 Ndb9433dd2f3f43198963dfb050ff80dd schema:name doi
72 schema:value 10.1007/s40993-018-0132-z
73 rdf:type schema:PropertyValue
74 Nff7d5e9d326d466abbcf3ab02167c9d2 rdf:first N6ced1e58f35b4114b10b22fd31294c06
75 rdf:rest N85aad797a9244441ad0d4c107306bd7e
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
80 schema:name Pure Mathematics
81 rdf:type schema:DefinedTerm
82 sg:grant.4893317 http://pending.schema.org/fundedItem sg:pub.10.1007/s40993-018-0132-z
83 rdf:type schema:MonetaryGrant
84 sg:journal.1053185 schema:issn 2363-9555
85 2522-0160
86 schema:name Research in Number Theory
87 rdf:type schema:Periodical
88 sg:pub.10.1007/978-0-387-73892-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041757458
89 https://doi.org/10.1007/978-0-387-73892-5
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/978-1-4612-0999-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047164045
92 https://doi.org/10.1007/978-1-4612-0999-7
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-1-4614-0028-8_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000914152
95 https://doi.org/10.1007/978-1-4614-0028-8_3
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/978-1-4757-3849-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001329144
98 https://doi.org/10.1007/978-1-4757-3849-0
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bfb0073491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015425119
101 https://doi.org/10.1007/bfb0073491
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0550-3213(96)00176-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035849060
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1090/coll/064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103642916
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1090/s0002-9947-1971-0272735-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041349137
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1215/s0012-7094-41-00854-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064416186
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1215/s0012-7094-99-09704-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064420497
112 rdf:type schema:CreativeWork
113 https://doi.org/10.2307/1968973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674378
114 rdf:type schema:CreativeWork
115 https://doi.org/10.2307/2371313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069898033
116 rdf:type schema:CreativeWork
117 https://doi.org/10.2307/2373167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899749
118 rdf:type schema:CreativeWork
119 https://doi.org/10.2307/2373210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899791
120 rdf:type schema:CreativeWork
121 https://doi.org/10.4171/025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099322124
122 rdf:type schema:CreativeWork
123 https://doi.org/10.4310/cntp.2015.v9.n2.a6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072459568
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.131063.6 schema:alternateName University of Notre Dame
126 schema:name Department of Mathematics, University of Notre Dame, 46556, Notre Dame, IN, USA
127 rdf:type schema:Organization
128 https://www.grid.ac/institutes/grid.268117.b schema:alternateName Wesleyan University
129 schema:name Department of Mathematics & Computer Science, Wesleyan University, 06457, Middletown, CT, USA
130 rdf:type schema:Organization
131 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
132 schema:name Mathematical Institute, University of Oxford, Oxford, England
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...