Rankin–Cohen brackets and Serre derivatives as Poincaré series View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Brandon Williams

ABSTRACT

We give expressions for the Serre derivatives of Eisenstein and Poincaré series as well as their Rankin–Cohen brackets with arbitrary modular forms in terms of the Poincaré averaging construction, and derive several identities for the Ramanujan tau function as applications.

PAGES

37

References to SciGraph publications

  • 2018-12. Poincaré square series for the Weil representation in THE RAMANUJAN JOURNAL
  • 2008. Elliptic Modular Forms and Their Applications in THE 1-2-3 OF MODULAR FORMS
  • 1994-02. Modular forms and differential operators in PROCEEDINGS - MATHEMATICAL SCIENCES
  • 1991-05. Cusp forms and special values of certain Dirichlet series in MATHEMATISCHE ZEITSCHRIFT
  • 2015-04. The adjoint of some linear maps constructed with the Rankin–Cohen brackets in THE RAMANUJAN JOURNAL
  • 1977. Modular forms whose fourier coefficients involve zeta-functions of quadratic fields in MODULAR FUNCTIONS OF ONE VARIABLE VI
  • Journal

    TITLE

    Research in Number Theory

    ISSUE

    4

    VOLUME

    4

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40993-018-0130-1

    DOI

    http://dx.doi.org/10.1007/s40993-018-0130-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106706112


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California, Berkeley", 
              "id": "https://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Mathematics, University of California, 94720, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Williams", 
            "givenName": "Brandon", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02830874", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002910991", 
              "https://doi.org/10.1007/bf02830874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02830874", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002910991", 
              "https://doi.org/10.1007/bf02830874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11139-013-9536-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010517609", 
              "https://doi.org/10.1007/s11139-013-9536-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02571414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021879432", 
              "https://doi.org/10.1007/bf02571414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02571414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021879432", 
              "https://doi.org/10.1007/bf02571414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10586458.1997.10504609", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036789702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0065299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041685042", 
              "https://doi.org/10.1007/bfb0065299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74119-0_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044830547", 
              "https://doi.org/10.1007/978-3-540-74119-0_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/ant.2013.7.1883", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069059030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/cdm.2008.v2008.n1.a5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072458298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnt.2017.01.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084090205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/gsm/017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098740272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11139-017-9986-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101631093", 
              "https://doi.org/10.1007/s11139-017-9986-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11139-017-9986-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101631093", 
              "https://doi.org/10.1007/s11139-017-9986-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "We give expressions for the Serre derivatives of Eisenstein and Poincar\u00e9 series as well as their Rankin\u2013Cohen brackets with arbitrary modular forms in terms of the Poincar\u00e9 averaging construction, and derive several identities for the Ramanujan tau function as applications.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40993-018-0130-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1053185", 
            "issn": [
              "2522-0160", 
              "2363-9555"
            ], 
            "name": "Research in Number Theory", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "Rankin\u2013Cohen brackets and Serre derivatives as Poincar\u00e9 series", 
        "pagination": "37", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f8caa36688cc0b11e2eb1b7b8f09243a9feca3d3d398f4260bafda6c624e3b6e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40993-018-0130-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106706112"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40993-018-0130-1", 
          "https://app.dimensions.ai/details/publication/pub.1106706112"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000572.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs40993-018-0130-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0130-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0130-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0130-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0130-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    91 TRIPLES      20 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40993-018-0130-1 schema:author N597a491152f3435b9d0855301ef22f21
    2 schema:citation sg:pub.10.1007/978-3-540-74119-0_1
    3 sg:pub.10.1007/bf02571414
    4 sg:pub.10.1007/bf02830874
    5 sg:pub.10.1007/bfb0065299
    6 sg:pub.10.1007/s11139-013-9536-5
    7 sg:pub.10.1007/s11139-017-9986-2
    8 https://doi.org/10.1016/j.jnt.2017.01.011
    9 https://doi.org/10.1080/10586458.1997.10504609
    10 https://doi.org/10.1090/gsm/017
    11 https://doi.org/10.2140/ant.2013.7.1883
    12 https://doi.org/10.4310/cdm.2008.v2008.n1.a5
    13 schema:datePublished 2018-12
    14 schema:datePublishedReg 2018-12-01
    15 schema:description We give expressions for the Serre derivatives of Eisenstein and Poincaré series as well as their Rankin–Cohen brackets with arbitrary modular forms in terms of the Poincaré averaging construction, and derive several identities for the Ramanujan tau function as applications.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree true
    19 schema:isPartOf N118bdb540c194f1e89f232965f47e830
    20 Na511d09e18a1440f8e0f7a462b17075c
    21 sg:journal.1053185
    22 schema:name Rankin–Cohen brackets and Serre derivatives as Poincaré series
    23 schema:pagination 37
    24 schema:productId N0ed8e52a212f47b9bae45bdc0f858ba6
    25 N293a2d2fd9c14d94a508e547b875a2b2
    26 N55b19bfb47a043a28fa52e7e9baa810e
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106706112
    28 https://doi.org/10.1007/s40993-018-0130-1
    29 schema:sdDatePublished 2019-04-10T17:40
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N2d788e1e6ec44502af0d229d572a3d3b
    32 schema:url https://link.springer.com/10.1007%2Fs40993-018-0130-1
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N0ed8e52a212f47b9bae45bdc0f858ba6 schema:name doi
    37 schema:value 10.1007/s40993-018-0130-1
    38 rdf:type schema:PropertyValue
    39 N118bdb540c194f1e89f232965f47e830 schema:issueNumber 4
    40 rdf:type schema:PublicationIssue
    41 N293a2d2fd9c14d94a508e547b875a2b2 schema:name dimensions_id
    42 schema:value pub.1106706112
    43 rdf:type schema:PropertyValue
    44 N2d788e1e6ec44502af0d229d572a3d3b schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 N55b19bfb47a043a28fa52e7e9baa810e schema:name readcube_id
    47 schema:value f8caa36688cc0b11e2eb1b7b8f09243a9feca3d3d398f4260bafda6c624e3b6e
    48 rdf:type schema:PropertyValue
    49 N597a491152f3435b9d0855301ef22f21 rdf:first N8224be32fe06482789781da126dd9354
    50 rdf:rest rdf:nil
    51 N8224be32fe06482789781da126dd9354 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
    52 schema:familyName Williams
    53 schema:givenName Brandon
    54 rdf:type schema:Person
    55 Na511d09e18a1440f8e0f7a462b17075c schema:volumeNumber 4
    56 rdf:type schema:PublicationVolume
    57 sg:journal.1053185 schema:issn 2363-9555
    58 2522-0160
    59 schema:name Research in Number Theory
    60 rdf:type schema:Periodical
    61 sg:pub.10.1007/978-3-540-74119-0_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044830547
    62 https://doi.org/10.1007/978-3-540-74119-0_1
    63 rdf:type schema:CreativeWork
    64 sg:pub.10.1007/bf02571414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021879432
    65 https://doi.org/10.1007/bf02571414
    66 rdf:type schema:CreativeWork
    67 sg:pub.10.1007/bf02830874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002910991
    68 https://doi.org/10.1007/bf02830874
    69 rdf:type schema:CreativeWork
    70 sg:pub.10.1007/bfb0065299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041685042
    71 https://doi.org/10.1007/bfb0065299
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/s11139-013-9536-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010517609
    74 https://doi.org/10.1007/s11139-013-9536-5
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1007/s11139-017-9986-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101631093
    77 https://doi.org/10.1007/s11139-017-9986-2
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1016/j.jnt.2017.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084090205
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1080/10586458.1997.10504609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036789702
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1090/gsm/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098740272
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.2140/ant.2013.7.1883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069059030
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.4310/cdm.2008.v2008.n1.a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072458298
    88 rdf:type schema:CreativeWork
    89 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
    90 schema:name Department of Mathematics, University of California, 94720, Berkeley, CA, USA
    91 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...