Indecomposable vector-valued modular forms and periods of modular curves View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06

AUTHORS

Luca Candelori, Tucker Hartland, Christopher Marks, Diego Yépez

ABSTRACT

We classify the three-dimensional representations of the modular group that are reducible but indecomposable, and their associated spaces of holomorphic vector-valued modular forms. We then demonstrate how such representations may be employed to compute periods of modular curves. This technique obviates the use of Hecke operators, and therefore provides a method for studying noncongruence modular curves as well as congruence. More... »

PAGES

17

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40993-018-0113-2

DOI

http://dx.doi.org/10.1007/s40993-018-0113-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101720436


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hawaii at Manoa", 
          "id": "https://www.grid.ac/institutes/grid.410445.0", 
          "name": [
            "Department of Mathematics, University of Hawaii, 2565 McCarthy Mall, 96822, Honolulu, HI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Candelori", 
        "givenName": "Luca", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Merced", 
          "id": "https://www.grid.ac/institutes/grid.266096.d", 
          "name": [
            "Department of Applied Mathematics, University of California, Merced, 5200 N Lake Road, 95343, Merced, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hartland", 
        "givenName": "Tucker", 
        "id": "sg:person.010557120144.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010557120144.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "California State University, Chico", 
          "id": "https://www.grid.ac/institutes/grid.253555.1", 
          "name": [
            "Department of Mathematics and Statistics, California State University, Chico, 400 West First Street, 95929, Chico, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marks", 
        "givenName": "Christopher", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of the Pacific", 
          "id": "https://www.grid.ac/institutes/grid.254662.1", 
          "name": [
            "School of Engineering and Computer Science, University of the Pacific, 3601, Pacific Avenue, 95211, Stockton, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Y\u00e9pez", 
        "givenName": "Diego", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1024495704", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9162-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024495704", 
          "https://doi.org/10.1007/978-1-4684-9162-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9162-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024495704", 
          "https://doi.org/10.1007/978-1-4684-9162-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0894-0347-96-00182-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031375719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10586458.2003.10504495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035075082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-314x(02)00065-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036320875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/jlms/jdq020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037963719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11139-012-9408-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047665047", 
          "https://doi.org/10.1007/s11139-012-9408-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11139-014-9644-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052602230", 
          "https://doi.org/10.1007/s11139-014-9644-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11139-007-9054-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053492821", 
          "https://doi.org/10.1007/s11139-007-9054-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/im1972v006n01abeh001867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058166478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1793042107000973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063019388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s179304211750004x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063020431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cmb-2014-007-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072273295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/pspum/008/0182610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089195944"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "We classify the three-dimensional representations of the modular group that are reducible but indecomposable, and their associated spaces of holomorphic vector-valued modular forms. We then demonstrate how such representations may be employed to compute periods of modular curves. This technique obviates the use of Hecke operators, and therefore provides a method for studying noncongruence modular curves as well as congruence.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40993-018-0113-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053185", 
        "issn": [
          "2522-0160", 
          "2363-9555"
        ], 
        "name": "Research in Number Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Indecomposable vector-valued modular forms and periods of modular curves", 
    "pagination": "17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "58e2febb7ee6ff6700e35f9f0d51616abffaaa90a44fe484751498b2ec427e7a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40993-018-0113-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101720436"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40993-018-0113-2", 
      "https://app.dimensions.ai/details/publication/pub.1101720436"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72850_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40993-018-0113-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0113-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0113-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0113-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40993-018-0113-2'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40993-018-0113-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nfbdddbacd2484ad9bc6d6608c1d71d50
4 schema:citation sg:pub.10.1007/978-1-4684-9162-3
5 sg:pub.10.1007/s11139-007-9054-4
6 sg:pub.10.1007/s11139-012-9408-4
7 sg:pub.10.1007/s11139-014-9644-x
8 https://app.dimensions.ai/details/publication/pub.1024495704
9 https://doi.org/10.1016/s0022-314x(02)00065-3
10 https://doi.org/10.1070/im1972v006n01abeh001867
11 https://doi.org/10.1080/10586458.2003.10504495
12 https://doi.org/10.1090/pspum/008/0182610
13 https://doi.org/10.1090/s0894-0347-96-00182-8
14 https://doi.org/10.1112/jlms/jdq020
15 https://doi.org/10.1142/s1793042107000973
16 https://doi.org/10.1142/s179304211750004x
17 https://doi.org/10.2307/2373033
18 https://doi.org/10.4153/cmb-2014-007-3
19 schema:datePublished 2018-06
20 schema:datePublishedReg 2018-06-01
21 schema:description We classify the three-dimensional representations of the modular group that are reducible but indecomposable, and their associated spaces of holomorphic vector-valued modular forms. We then demonstrate how such representations may be employed to compute periods of modular curves. This technique obviates the use of Hecke operators, and therefore provides a method for studying noncongruence modular curves as well as congruence.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N059b145c75324f2bb9d12485200a9b04
26 N856051b37a114c00b60f73a11c6809b2
27 sg:journal.1053185
28 schema:name Indecomposable vector-valued modular forms and periods of modular curves
29 schema:pagination 17
30 schema:productId N891028b2c4874e36a77c106c29a3cc71
31 N94a417e8642a415092ed8f624adc55cb
32 Nf85850ceaaa34354bdd3d6f373b47b88
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101720436
34 https://doi.org/10.1007/s40993-018-0113-2
35 schema:sdDatePublished 2019-04-11T12:53
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nbdc1b851b7464c8ba4b89198810c18a6
38 schema:url https://link.springer.com/10.1007%2Fs40993-018-0113-2
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N059b145c75324f2bb9d12485200a9b04 schema:issueNumber 2
43 rdf:type schema:PublicationIssue
44 N3894aa21285c47f88b9f887736aea796 rdf:first N4b935b8b72b946099d746e90fa33fa67
45 rdf:rest rdf:nil
46 N4b935b8b72b946099d746e90fa33fa67 schema:affiliation https://www.grid.ac/institutes/grid.254662.1
47 schema:familyName Yépez
48 schema:givenName Diego
49 rdf:type schema:Person
50 N62a7412735f04c64887ebd7f6dea7947 rdf:first Na41b7f5159cc41ce9cea158343d88152
51 rdf:rest N3894aa21285c47f88b9f887736aea796
52 N7fa29f0b21f64260843d77b5c1ea02d7 rdf:first sg:person.010557120144.31
53 rdf:rest N62a7412735f04c64887ebd7f6dea7947
54 N856051b37a114c00b60f73a11c6809b2 schema:volumeNumber 4
55 rdf:type schema:PublicationVolume
56 N891028b2c4874e36a77c106c29a3cc71 schema:name dimensions_id
57 schema:value pub.1101720436
58 rdf:type schema:PropertyValue
59 N94a417e8642a415092ed8f624adc55cb schema:name readcube_id
60 schema:value 58e2febb7ee6ff6700e35f9f0d51616abffaaa90a44fe484751498b2ec427e7a
61 rdf:type schema:PropertyValue
62 Na41b7f5159cc41ce9cea158343d88152 schema:affiliation https://www.grid.ac/institutes/grid.253555.1
63 schema:familyName Marks
64 schema:givenName Christopher
65 rdf:type schema:Person
66 Nbdc1b851b7464c8ba4b89198810c18a6 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Ne2365b4b3f0a49faa0a03912139a3e07 schema:affiliation https://www.grid.ac/institutes/grid.410445.0
69 schema:familyName Candelori
70 schema:givenName Luca
71 rdf:type schema:Person
72 Nf85850ceaaa34354bdd3d6f373b47b88 schema:name doi
73 schema:value 10.1007/s40993-018-0113-2
74 rdf:type schema:PropertyValue
75 Nfbdddbacd2484ad9bc6d6608c1d71d50 rdf:first Ne2365b4b3f0a49faa0a03912139a3e07
76 rdf:rest N7fa29f0b21f64260843d77b5c1ea02d7
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
81 schema:name Pure Mathematics
82 rdf:type schema:DefinedTerm
83 sg:journal.1053185 schema:issn 2363-9555
84 2522-0160
85 schema:name Research in Number Theory
86 rdf:type schema:Periodical
87 sg:person.010557120144.31 schema:affiliation https://www.grid.ac/institutes/grid.266096.d
88 schema:familyName Hartland
89 schema:givenName Tucker
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010557120144.31
91 rdf:type schema:Person
92 sg:pub.10.1007/978-1-4684-9162-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024495704
93 https://doi.org/10.1007/978-1-4684-9162-3
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s11139-007-9054-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053492821
96 https://doi.org/10.1007/s11139-007-9054-4
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s11139-012-9408-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047665047
99 https://doi.org/10.1007/s11139-012-9408-4
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s11139-014-9644-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052602230
102 https://doi.org/10.1007/s11139-014-9644-x
103 rdf:type schema:CreativeWork
104 https://app.dimensions.ai/details/publication/pub.1024495704 schema:CreativeWork
105 https://doi.org/10.1016/s0022-314x(02)00065-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036320875
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1070/im1972v006n01abeh001867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058166478
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1080/10586458.2003.10504495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035075082
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1090/pspum/008/0182610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089195944
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1090/s0894-0347-96-00182-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031375719
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1112/jlms/jdq020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037963719
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1142/s1793042107000973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063019388
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1142/s179304211750004x schema:sameAs https://app.dimensions.ai/details/publication/pub.1063020431
120 rdf:type schema:CreativeWork
121 https://doi.org/10.2307/2373033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899619
122 rdf:type schema:CreativeWork
123 https://doi.org/10.4153/cmb-2014-007-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072273295
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.253555.1 schema:alternateName California State University, Chico
126 schema:name Department of Mathematics and Statistics, California State University, Chico, 400 West First Street, 95929, Chico, CA, USA
127 rdf:type schema:Organization
128 https://www.grid.ac/institutes/grid.254662.1 schema:alternateName University of the Pacific
129 schema:name School of Engineering and Computer Science, University of the Pacific, 3601, Pacific Avenue, 95211, Stockton, CA, USA
130 rdf:type schema:Organization
131 https://www.grid.ac/institutes/grid.266096.d schema:alternateName University of California, Merced
132 schema:name Department of Applied Mathematics, University of California, Merced, 5200 N Lake Road, 95343, Merced, CA, USA
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.410445.0 schema:alternateName University of Hawaii at Manoa
135 schema:name Department of Mathematics, University of Hawaii, 2565 McCarthy Mall, 96822, Honolulu, HI, USA
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...