Estimation of Random Components and Prediction in One and Two-Way Error Component Regression Models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-12-15

AUTHORS

Subhash C. Sharma, Anil K. Bera

ABSTRACT

Since one of the main objectives of panel data analysis is to uncover individual and/or time effects, the estimation of these random components is very important. Estimation of individual and time components will also help in predicting the future values of the dependent variable, which has received some attention in the literature. Following the stochastic frontier literature, our contention is that estimation of these random components is akin to the estimation of “firm-specific” efficiency. Thus, considering the conditional distributions of the random components and using the conditional mean and variance, we provide both point and interval estimates of the individual and time effects in the one and two-way error component models. Using these standard errors one can also test the significance of random components. Equations for predictions are also provided for these models. Finally, all our theoretical results are illustrated with an empirical application. More... »

PAGES

419-441

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40953-021-00278-4

DOI

http://dx.doi.org/10.1007/s40953-021-00278-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1143897563


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southern Illinois University Carbondale, 62901, Carbondale, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.263856.c", 
          "name": [
            "Southern Illinois University Carbondale, 62901, Carbondale, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharma", 
        "givenName": "Subhash C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Economics, University of Illinois at Urbana-Champaign, 61820, Champaign, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Economics, University of Illinois at Urbana-Champaign, 61820, Champaign, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bera", 
        "givenName": "Anil K.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1007828521773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025368821", 
          "https://doi.org/10.1023/a:1007828521773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2769-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108501739", 
          "https://doi.org/10.1007/978-1-4757-2769-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00157044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032643741", 
          "https://doi.org/10.1007/bf00157044"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-12-15", 
    "datePublishedReg": "2021-12-15", 
    "description": "Since one of the main objectives of panel data analysis is to uncover individual and/or time effects, the estimation of these random components is very important. Estimation of individual and time components will also help in predicting the future values of the dependent variable, which has received some attention in the literature. Following the stochastic frontier literature, our contention is that estimation of these random components is akin to the estimation of \u201cfirm-specific\u201d efficiency. Thus, considering the conditional distributions of the random components and using the conditional mean and variance, we provide both point and interval estimates of the individual and time effects in the one and two-way error component models. Using these standard errors one can also test the significance of random components. Equations for predictions are also provided for these models. Finally, all our theoretical results are illustrated with an empirical application.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40953-021-00278-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1027984", 
        "issn": [
          "0971-1554", 
          "2364-1045"
        ], 
        "name": "Journal of Quantitative Economics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "keywords": [
      "random component", 
      "stochastic frontier literature", 
      "two-way error component model", 
      "two-way error component regression model", 
      "theoretical results", 
      "conditional distribution", 
      "interval estimates", 
      "error component regression model", 
      "panel data analysis", 
      "error component model", 
      "frontier literature", 
      "empirical application", 
      "estimation", 
      "future values", 
      "standard error", 
      "component model", 
      "equations", 
      "time component", 
      "time effects", 
      "model", 
      "dependent variable", 
      "data analysis", 
      "prediction", 
      "regression models", 
      "error", 
      "estimates", 
      "main objective", 
      "variables", 
      "distribution", 
      "point", 
      "applications", 
      "literature", 
      "variance", 
      "components", 
      "efficiency", 
      "results", 
      "values", 
      "analysis", 
      "effect", 
      "objective", 
      "contention", 
      "attention", 
      "significance"
    ], 
    "name": "Estimation of Random Components and Prediction in One and Two-Way Error Component Regression Models", 
    "pagination": "419-441", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1143897563"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40953-021-00278-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40953-021-00278-4", 
      "https://app.dimensions.ai/details/publication/pub.1143897563"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_901.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40953-021-00278-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40953-021-00278-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40953-021-00278-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40953-021-00278-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40953-021-00278-4'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      22 PREDICATES      71 URIs      60 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40953-021-00278-4 schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author Ne703dce6ef634e5a9ccb816c085c7e90
4 schema:citation sg:pub.10.1007/978-1-4757-2769-2
5 sg:pub.10.1007/bf00157044
6 sg:pub.10.1023/a:1007828521773
7 schema:datePublished 2021-12-15
8 schema:datePublishedReg 2021-12-15
9 schema:description Since one of the main objectives of panel data analysis is to uncover individual and/or time effects, the estimation of these random components is very important. Estimation of individual and time components will also help in predicting the future values of the dependent variable, which has received some attention in the literature. Following the stochastic frontier literature, our contention is that estimation of these random components is akin to the estimation of “firm-specific” efficiency. Thus, considering the conditional distributions of the random components and using the conditional mean and variance, we provide both point and interval estimates of the individual and time effects in the one and two-way error component models. Using these standard errors one can also test the significance of random components. Equations for predictions are also provided for these models. Finally, all our theoretical results are illustrated with an empirical application.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N49ba27f705b04635846138e7b5b76b76
14 N66f755af150d490b98e1737566a949dd
15 sg:journal.1027984
16 schema:keywords analysis
17 applications
18 attention
19 component model
20 components
21 conditional distribution
22 contention
23 data analysis
24 dependent variable
25 distribution
26 effect
27 efficiency
28 empirical application
29 equations
30 error
31 error component model
32 error component regression model
33 estimates
34 estimation
35 frontier literature
36 future values
37 interval estimates
38 literature
39 main objective
40 model
41 objective
42 panel data analysis
43 point
44 prediction
45 random component
46 regression models
47 results
48 significance
49 standard error
50 stochastic frontier literature
51 theoretical results
52 time component
53 time effects
54 two-way error component model
55 two-way error component regression model
56 values
57 variables
58 variance
59 schema:name Estimation of Random Components and Prediction in One and Two-Way Error Component Regression Models
60 schema:pagination 419-441
61 schema:productId Nd05c9fc330c94aa68834c530a75bded7
62 Nd4eb17b6ee0a44fb9cf506fd3ed81bf1
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143897563
64 https://doi.org/10.1007/s40953-021-00278-4
65 schema:sdDatePublished 2022-05-20T07:39
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N4255d35452104abb931ddfe8bbba8af7
68 schema:url https://doi.org/10.1007/s40953-021-00278-4
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N1965cf2f9cb94fa093d7786ddc446c02 rdf:first N4165acc11da8408782a6c8a46446841d
73 rdf:rest rdf:nil
74 N4165acc11da8408782a6c8a46446841d schema:affiliation grid-institutes:grid.35403.31
75 schema:familyName Bera
76 schema:givenName Anil K.
77 rdf:type schema:Person
78 N4255d35452104abb931ddfe8bbba8af7 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N49ba27f705b04635846138e7b5b76b76 schema:issueNumber Suppl 1
81 rdf:type schema:PublicationIssue
82 N66f755af150d490b98e1737566a949dd schema:volumeNumber 19
83 rdf:type schema:PublicationVolume
84 Nd05c9fc330c94aa68834c530a75bded7 schema:name doi
85 schema:value 10.1007/s40953-021-00278-4
86 rdf:type schema:PropertyValue
87 Nd4eb17b6ee0a44fb9cf506fd3ed81bf1 schema:name dimensions_id
88 schema:value pub.1143897563
89 rdf:type schema:PropertyValue
90 Ne703dce6ef634e5a9ccb816c085c7e90 rdf:first Nec0dd1ec2e1a4aeb85937c99e6fff2b2
91 rdf:rest N1965cf2f9cb94fa093d7786ddc446c02
92 Nec0dd1ec2e1a4aeb85937c99e6fff2b2 schema:affiliation grid-institutes:grid.263856.c
93 schema:familyName Sharma
94 schema:givenName Subhash C.
95 rdf:type schema:Person
96 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
97 schema:name Economics
98 rdf:type schema:DefinedTerm
99 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
100 schema:name Econometrics
101 rdf:type schema:DefinedTerm
102 sg:journal.1027984 schema:issn 0971-1554
103 2364-1045
104 schema:name Journal of Quantitative Economics
105 schema:publisher Springer Nature
106 rdf:type schema:Periodical
107 sg:pub.10.1007/978-1-4757-2769-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108501739
108 https://doi.org/10.1007/978-1-4757-2769-2
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf00157044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032643741
111 https://doi.org/10.1007/bf00157044
112 rdf:type schema:CreativeWork
113 sg:pub.10.1023/a:1007828521773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025368821
114 https://doi.org/10.1023/a:1007828521773
115 rdf:type schema:CreativeWork
116 grid-institutes:grid.263856.c schema:alternateName Southern Illinois University Carbondale, 62901, Carbondale, IL, USA
117 schema:name Southern Illinois University Carbondale, 62901, Carbondale, IL, USA
118 rdf:type schema:Organization
119 grid-institutes:grid.35403.31 schema:alternateName Department of Economics, University of Illinois at Urbana-Champaign, 61820, Champaign, IL, USA
120 schema:name Department of Economics, University of Illinois at Urbana-Champaign, 61820, Champaign, IL, USA
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...