Weak Versus Strong Dominance of Shrinkage Estimators View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-18

AUTHORS

Giuseppe De Luca, Jan R. Magnus

ABSTRACT

We consider the estimation of the mean of a multivariate normal distribution with known variance. Most studies consider the risk of competing estimators, that is the trace of the mean squared error matrix. In contrast we consider the whole mean squared error matrix, in particular its eigenvalues. We prove that there are only two distinct eigenvalues and apply our findings to the James–Stein and the Thompson class of estimators. It turns out that the famous Stein paradox is no longer a paradox when we consider the whole mean squared error matrix rather than only its trace. More... »

PAGES

239-266

References to SciGraph publications

  • 2000-04. Stein estimation—A review in STATISTICAL PAPERS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40953-021-00270-y

    DOI

    http://dx.doi.org/10.1007/s40953-021-00270-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1142682281


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Economics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Economics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Econometrics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy", 
              "id": "http://www.grid.ac/institutes/grid.10776.37", 
              "name": [
                "Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "De Luca", 
            "givenName": "Giuseppe", 
            "id": "sg:person.014630317036.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014630317036.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tinbergen Institute, Amsterdam, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.438706.e", 
              "name": [
                "Department of Econometrics and Data Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands", 
                "Tinbergen Institute, Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Magnus", 
            "givenName": "Jan R.", 
            "id": "sg:person.013775361365.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775361365.60"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02926100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036995188", 
              "https://doi.org/10.1007/bf02926100"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-11-18", 
        "datePublishedReg": "2021-11-18", 
        "description": "We consider the estimation of the mean of a multivariate normal distribution with known variance. Most studies consider the risk of competing estimators, that is the trace of the mean squared error matrix. In contrast we consider the whole mean squared error matrix, in particular its eigenvalues. We prove that there are only two distinct eigenvalues and apply our findings to the James\u2013Stein and the Thompson class of estimators. It turns out that the famous Stein paradox is no longer a paradox when we consider the whole mean squared error matrix rather than only its trace.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s40953-021-00270-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1027984", 
            "issn": [
              "0971-1554", 
              "2364-1045"
            ], 
            "name": "Journal of Quantitative Economics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "keywords": [
          "most studies", 
          "risk", 
          "findings", 
          "study", 
          "contrast", 
          "mean squared error matrix", 
          "squared error matrix", 
          "variance", 
          "normal distribution", 
          "error matrix", 
          "means", 
          "multivariate normal distribution", 
          "paradox", 
          "distinct eigenvalues", 
          "shrinkage estimators", 
          "Stein's paradox", 
          "estimator", 
          "class", 
          "distribution", 
          "eigenvalues", 
          "James\u2013Stein", 
          "dominance", 
          "matrix", 
          "estimation", 
          "traces", 
          "strong dominance"
        ], 
        "name": "Weak Versus Strong Dominance of Shrinkage Estimators", 
        "pagination": "239-266", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1142682281"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40953-021-00270-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40953-021-00270-y", 
          "https://app.dimensions.ai/details/publication/pub.1142682281"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_873.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s40953-021-00270-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40953-021-00270-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40953-021-00270-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40953-021-00270-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40953-021-00270-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    103 TRIPLES      22 PREDICATES      53 URIs      43 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40953-021-00270-y schema:about anzsrc-for:14
    2 anzsrc-for:1402
    3 anzsrc-for:1403
    4 schema:author N84a3be7c618b4af7839fb2186c64ee31
    5 schema:citation sg:pub.10.1007/bf02926100
    6 schema:datePublished 2021-11-18
    7 schema:datePublishedReg 2021-11-18
    8 schema:description We consider the estimation of the mean of a multivariate normal distribution with known variance. Most studies consider the risk of competing estimators, that is the trace of the mean squared error matrix. In contrast we consider the whole mean squared error matrix, in particular its eigenvalues. We prove that there are only two distinct eigenvalues and apply our findings to the James–Stein and the Thompson class of estimators. It turns out that the famous Stein paradox is no longer a paradox when we consider the whole mean squared error matrix rather than only its trace.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N74a589589be1484cb107653988a30e0f
    13 Nfedf6fa2e71041b7b42e35e14ca65287
    14 sg:journal.1027984
    15 schema:keywords James–Stein
    16 Stein's paradox
    17 class
    18 contrast
    19 distinct eigenvalues
    20 distribution
    21 dominance
    22 eigenvalues
    23 error matrix
    24 estimation
    25 estimator
    26 findings
    27 matrix
    28 mean squared error matrix
    29 means
    30 most studies
    31 multivariate normal distribution
    32 normal distribution
    33 paradox
    34 risk
    35 shrinkage estimators
    36 squared error matrix
    37 strong dominance
    38 study
    39 traces
    40 variance
    41 schema:name Weak Versus Strong Dominance of Shrinkage Estimators
    42 schema:pagination 239-266
    43 schema:productId N1a635ae057904d98bceb452cdc4e66b9
    44 N59cf07dbd8294bd383bea0d8b5e74731
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142682281
    46 https://doi.org/10.1007/s40953-021-00270-y
    47 schema:sdDatePublished 2022-05-20T07:38
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher N79cf2aa57c064962a12e11aa980e558d
    50 schema:url https://doi.org/10.1007/s40953-021-00270-y
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N1a635ae057904d98bceb452cdc4e66b9 schema:name doi
    55 schema:value 10.1007/s40953-021-00270-y
    56 rdf:type schema:PropertyValue
    57 N59cf07dbd8294bd383bea0d8b5e74731 schema:name dimensions_id
    58 schema:value pub.1142682281
    59 rdf:type schema:PropertyValue
    60 N74a589589be1484cb107653988a30e0f schema:issueNumber Suppl 1
    61 rdf:type schema:PublicationIssue
    62 N79cf2aa57c064962a12e11aa980e558d schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 N84a3be7c618b4af7839fb2186c64ee31 rdf:first sg:person.014630317036.23
    65 rdf:rest N99d6a5b2e0f741ea8a96a0204f1190b1
    66 N99d6a5b2e0f741ea8a96a0204f1190b1 rdf:first sg:person.013775361365.60
    67 rdf:rest rdf:nil
    68 Nfedf6fa2e71041b7b42e35e14ca65287 schema:volumeNumber 19
    69 rdf:type schema:PublicationVolume
    70 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Economics
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Applied Economics
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Econometrics
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1027984 schema:issn 0971-1554
    80 2364-1045
    81 schema:name Journal of Quantitative Economics
    82 schema:publisher Springer Nature
    83 rdf:type schema:Periodical
    84 sg:person.013775361365.60 schema:affiliation grid-institutes:grid.438706.e
    85 schema:familyName Magnus
    86 schema:givenName Jan R.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775361365.60
    88 rdf:type schema:Person
    89 sg:person.014630317036.23 schema:affiliation grid-institutes:grid.10776.37
    90 schema:familyName De Luca
    91 schema:givenName Giuseppe
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014630317036.23
    93 rdf:type schema:Person
    94 sg:pub.10.1007/bf02926100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036995188
    95 https://doi.org/10.1007/bf02926100
    96 rdf:type schema:CreativeWork
    97 grid-institutes:grid.10776.37 schema:alternateName Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy
    98 schema:name Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy
    99 rdf:type schema:Organization
    100 grid-institutes:grid.438706.e schema:alternateName Tinbergen Institute, Amsterdam, The Netherlands
    101 schema:name Department of Econometrics and Data Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
    102 Tinbergen Institute, Amsterdam, The Netherlands
    103 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...