2021-12-03
AUTHORS ABSTRACTThe bootstrap is shown to be inconsistent in spurious regression. The failure of the bootstrap is spectacular in that the bootstrap effectively turns a spurious regression into a cointegrating regression. In particular, the serial correlation coefficient of the residuals in the bootstrap regression does not converge to unity, so the bootstrap is not even first order consistent. The block bootstrap serial correlation coefficient does converge to unity and is therefore first order consistent, but has a slower rate of convergence and a different limit distribution from that of the sample data serial correlation coefficient. The analysis covers spurious regressions involving both deterministic trends and stochastic trends. Methods are developed for analyzing the asymptotic behavior of bootstrap techniques with nonstationary time series and the results reinforce longstanding warnings about routine use of the bootstrap with dependent data. More... »
PAGES163-217
http://scigraph.springernature.com/pub.10.1007/s40953-021-00268-6
DOIhttp://dx.doi.org/10.1007/s40953-021-00268-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1143569545
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Economics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Economics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Econometrics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Southampton, Southampton, England",
"id": "http://www.grid.ac/institutes/grid.5491.9",
"name": [
"Yale University, New Haven, USA",
"University of Auckland, Auckland, New Zealand",
"Singapore Management University, Singapore, Singapore",
"University of Southampton, Southampton, England"
],
"type": "Organization"
},
"familyName": "Phillips",
"givenName": "Peter C. B.",
"id": "sg:person.011774746303.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011774746303.20"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-1-4612-4384-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045715699",
"https://doi.org/10.1007/978-1-4612-4384-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-1554-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027828984",
"https://doi.org/10.1007/978-1-4612-1554-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-48850-4_14",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024621750",
"https://doi.org/10.1007/978-3-642-48850-4_14"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-12-03",
"datePublishedReg": "2021-12-03",
"description": "The bootstrap is shown to be inconsistent in spurious regression. The failure of the bootstrap is spectacular in that the bootstrap effectively turns a spurious regression into a cointegrating regression. In particular, the serial correlation coefficient of the residuals in the bootstrap regression does not converge to unity, so the bootstrap is not even first order consistent. The block bootstrap serial correlation coefficient does converge to unity and is therefore first order consistent, but has a slower rate of convergence and a different limit distribution from that of the sample data serial correlation coefficient. The analysis covers spurious regressions involving both deterministic trends and stochastic trends. Methods are developed for analyzing the asymptotic behavior of bootstrap techniques with nonstationary time series and the results reinforce longstanding warnings about routine use of the bootstrap with dependent data.",
"genre": "article",
"id": "sg:pub.10.1007/s40953-021-00268-6",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1027984",
"issn": [
"0971-1554",
"2364-1045"
],
"name": "Journal of Quantitative Economics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "Suppl 1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "19"
}
],
"keywords": [
"serial correlation coefficient",
"spurious regression",
"different limit distributions",
"first order",
"nonstationary time series",
"asymptotic behavior",
"limit distribution",
"dependent data",
"bootstrap",
"deterministic trend",
"bootstrap technique",
"stochastic trends",
"time series",
"convergence",
"coefficient",
"bootstrap regression",
"residuals",
"unity",
"correlation coefficient",
"order",
"regression",
"distribution",
"technique",
"behavior",
"results",
"analysis",
"data",
"series",
"use",
"trends",
"pitfalls",
"rate",
"slower rate",
"warning",
"failure",
"routine use",
"method"
],
"name": "Pitfalls in Bootstrapping Spurious Regression",
"pagination": "163-217",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1143569545"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s40953-021-00268-6"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s40953-021-00268-6",
"https://app.dimensions.ai/details/publication/pub.1143569545"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_915.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s40953-021-00268-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40953-021-00268-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40953-021-00268-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40953-021-00268-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40953-021-00268-6'
This table displays all metadata directly associated to this object as RDF triples.
114 TRIPLES
22 PREDICATES
66 URIs
54 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s40953-021-00268-6 | schema:about | anzsrc-for:14 |
2 | ″ | ″ | anzsrc-for:1402 |
3 | ″ | ″ | anzsrc-for:1403 |
4 | ″ | schema:author | N12a2f339fcd845ef80808dc5ef5c90ba |
5 | ″ | schema:citation | sg:pub.10.1007/978-1-4612-1554-7 |
6 | ″ | ″ | sg:pub.10.1007/978-1-4612-4384-7 |
7 | ″ | ″ | sg:pub.10.1007/978-3-642-48850-4_14 |
8 | ″ | schema:datePublished | 2021-12-03 |
9 | ″ | schema:datePublishedReg | 2021-12-03 |
10 | ″ | schema:description | The bootstrap is shown to be inconsistent in spurious regression. The failure of the bootstrap is spectacular in that the bootstrap effectively turns a spurious regression into a cointegrating regression. In particular, the serial correlation coefficient of the residuals in the bootstrap regression does not converge to unity, so the bootstrap is not even first order consistent. The block bootstrap serial correlation coefficient does converge to unity and is therefore first order consistent, but has a slower rate of convergence and a different limit distribution from that of the sample data serial correlation coefficient. The analysis covers spurious regressions involving both deterministic trends and stochastic trends. Methods are developed for analyzing the asymptotic behavior of bootstrap techniques with nonstationary time series and the results reinforce longstanding warnings about routine use of the bootstrap with dependent data. |
11 | ″ | schema:genre | article |
12 | ″ | schema:inLanguage | en |
13 | ″ | schema:isAccessibleForFree | false |
14 | ″ | schema:isPartOf | N765e3319a5944aa09f7c9b6877baa97d |
15 | ″ | ″ | Nfa1d6373e36c49b28b5a3163316d838d |
16 | ″ | ″ | sg:journal.1027984 |
17 | ″ | schema:keywords | analysis |
18 | ″ | ″ | asymptotic behavior |
19 | ″ | ″ | behavior |
20 | ″ | ″ | bootstrap |
21 | ″ | ″ | bootstrap regression |
22 | ″ | ″ | bootstrap technique |
23 | ″ | ″ | coefficient |
24 | ″ | ″ | convergence |
25 | ″ | ″ | correlation coefficient |
26 | ″ | ″ | data |
27 | ″ | ″ | dependent data |
28 | ″ | ″ | deterministic trend |
29 | ″ | ″ | different limit distributions |
30 | ″ | ″ | distribution |
31 | ″ | ″ | failure |
32 | ″ | ″ | first order |
33 | ″ | ″ | limit distribution |
34 | ″ | ″ | method |
35 | ″ | ″ | nonstationary time series |
36 | ″ | ″ | order |
37 | ″ | ″ | pitfalls |
38 | ″ | ″ | rate |
39 | ″ | ″ | regression |
40 | ″ | ″ | residuals |
41 | ″ | ″ | results |
42 | ″ | ″ | routine use |
43 | ″ | ″ | serial correlation coefficient |
44 | ″ | ″ | series |
45 | ″ | ″ | slower rate |
46 | ″ | ″ | spurious regression |
47 | ″ | ″ | stochastic trends |
48 | ″ | ″ | technique |
49 | ″ | ″ | time series |
50 | ″ | ″ | trends |
51 | ″ | ″ | unity |
52 | ″ | ″ | use |
53 | ″ | ″ | warning |
54 | ″ | schema:name | Pitfalls in Bootstrapping Spurious Regression |
55 | ″ | schema:pagination | 163-217 |
56 | ″ | schema:productId | N8c4cf632105c4e9ab5cf23f78774d1dc |
57 | ″ | ″ | Nec034be680604a8fa09c54badc4dea1a |
58 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1143569545 |
59 | ″ | ″ | https://doi.org/10.1007/s40953-021-00268-6 |
60 | ″ | schema:sdDatePublished | 2022-05-20T07:39 |
61 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
62 | ″ | schema:sdPublisher | Nfced526106c448c2a44c3e7350fa77c8 |
63 | ″ | schema:url | https://doi.org/10.1007/s40953-021-00268-6 |
64 | ″ | sgo:license | sg:explorer/license/ |
65 | ″ | sgo:sdDataset | articles |
66 | ″ | rdf:type | schema:ScholarlyArticle |
67 | N12a2f339fcd845ef80808dc5ef5c90ba | rdf:first | sg:person.011774746303.20 |
68 | ″ | rdf:rest | rdf:nil |
69 | N765e3319a5944aa09f7c9b6877baa97d | schema:issueNumber | Suppl 1 |
70 | ″ | rdf:type | schema:PublicationIssue |
71 | N8c4cf632105c4e9ab5cf23f78774d1dc | schema:name | dimensions_id |
72 | ″ | schema:value | pub.1143569545 |
73 | ″ | rdf:type | schema:PropertyValue |
74 | Nec034be680604a8fa09c54badc4dea1a | schema:name | doi |
75 | ″ | schema:value | 10.1007/s40953-021-00268-6 |
76 | ″ | rdf:type | schema:PropertyValue |
77 | Nfa1d6373e36c49b28b5a3163316d838d | schema:volumeNumber | 19 |
78 | ″ | rdf:type | schema:PublicationVolume |
79 | Nfced526106c448c2a44c3e7350fa77c8 | schema:name | Springer Nature - SN SciGraph project |
80 | ″ | rdf:type | schema:Organization |
81 | anzsrc-for:14 | schema:inDefinedTermSet | anzsrc-for: |
82 | ″ | schema:name | Economics |
83 | ″ | rdf:type | schema:DefinedTerm |
84 | anzsrc-for:1402 | schema:inDefinedTermSet | anzsrc-for: |
85 | ″ | schema:name | Applied Economics |
86 | ″ | rdf:type | schema:DefinedTerm |
87 | anzsrc-for:1403 | schema:inDefinedTermSet | anzsrc-for: |
88 | ″ | schema:name | Econometrics |
89 | ″ | rdf:type | schema:DefinedTerm |
90 | sg:journal.1027984 | schema:issn | 0971-1554 |
91 | ″ | ″ | 2364-1045 |
92 | ″ | schema:name | Journal of Quantitative Economics |
93 | ″ | schema:publisher | Springer Nature |
94 | ″ | rdf:type | schema:Periodical |
95 | sg:person.011774746303.20 | schema:affiliation | grid-institutes:grid.5491.9 |
96 | ″ | schema:familyName | Phillips |
97 | ″ | schema:givenName | Peter C. B. |
98 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011774746303.20 |
99 | ″ | rdf:type | schema:Person |
100 | sg:pub.10.1007/978-1-4612-1554-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027828984 |
101 | ″ | ″ | https://doi.org/10.1007/978-1-4612-1554-7 |
102 | ″ | rdf:type | schema:CreativeWork |
103 | sg:pub.10.1007/978-1-4612-4384-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045715699 |
104 | ″ | ″ | https://doi.org/10.1007/978-1-4612-4384-7 |
105 | ″ | rdf:type | schema:CreativeWork |
106 | sg:pub.10.1007/978-3-642-48850-4_14 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1024621750 |
107 | ″ | ″ | https://doi.org/10.1007/978-3-642-48850-4_14 |
108 | ″ | rdf:type | schema:CreativeWork |
109 | grid-institutes:grid.5491.9 | schema:alternateName | University of Southampton, Southampton, England |
110 | ″ | schema:name | Singapore Management University, Singapore, Singapore |
111 | ″ | ″ | University of Auckland, Auckland, New Zealand |
112 | ″ | ″ | University of Southampton, Southampton, England |
113 | ″ | ″ | Yale University, New Haven, USA |
114 | ″ | rdf:type | schema:Organization |