Pitfalls in Bootstrapping Spurious Regression View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-12-03

AUTHORS

Peter C. B. Phillips

ABSTRACT

The bootstrap is shown to be inconsistent in spurious regression. The failure of the bootstrap is spectacular in that the bootstrap effectively turns a spurious regression into a cointegrating regression. In particular, the serial correlation coefficient of the residuals in the bootstrap regression does not converge to unity, so the bootstrap is not even first order consistent. The block bootstrap serial correlation coefficient does converge to unity and is therefore first order consistent, but has a slower rate of convergence and a different limit distribution from that of the sample data serial correlation coefficient. The analysis covers spurious regressions involving both deterministic trends and stochastic trends. Methods are developed for analyzing the asymptotic behavior of bootstrap techniques with nonstationary time series and the results reinforce longstanding warnings about routine use of the bootstrap with dependent data. More... »

PAGES

163-217

References to SciGraph publications

  • 1999. Subsampling in NONE
  • 1992. The Bootstrap and Edgeworth Expansion in NONE
  • 1992. Bootstrap procedures for AR (∞) — processes in BOOTSTRAPPING AND RELATED TECHNIQUES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40953-021-00268-6

    DOI

    http://dx.doi.org/10.1007/s40953-021-00268-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1143569545


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Economics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Economics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Econometrics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Southampton, Southampton, England", 
              "id": "http://www.grid.ac/institutes/grid.5491.9", 
              "name": [
                "Yale University, New Haven, USA", 
                "University of Auckland, Auckland, New Zealand", 
                "Singapore Management University, Singapore, Singapore", 
                "University of Southampton, Southampton, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Phillips", 
            "givenName": "Peter C. B.", 
            "id": "sg:person.011774746303.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011774746303.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4612-4384-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045715699", 
              "https://doi.org/10.1007/978-1-4612-4384-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1554-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027828984", 
              "https://doi.org/10.1007/978-1-4612-1554-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-48850-4_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024621750", 
              "https://doi.org/10.1007/978-3-642-48850-4_14"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-12-03", 
        "datePublishedReg": "2021-12-03", 
        "description": "The bootstrap is shown to be inconsistent in spurious regression. The failure of the bootstrap is spectacular in that the bootstrap effectively turns a spurious regression into a cointegrating regression. In particular, the serial correlation coefficient of the residuals in the bootstrap regression does not converge to unity, so the bootstrap is not even first order consistent. The block bootstrap serial correlation coefficient does converge to unity and is therefore first order consistent, but has a slower rate of convergence and a different limit distribution from that of the sample data serial correlation coefficient. The analysis covers spurious regressions involving both deterministic trends and stochastic trends. Methods are developed for analyzing the asymptotic behavior of bootstrap techniques with nonstationary time series and the results reinforce longstanding warnings about routine use of the bootstrap with dependent data.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s40953-021-00268-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1027984", 
            "issn": [
              "0971-1554", 
              "2364-1045"
            ], 
            "name": "Journal of Quantitative Economics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "keywords": [
          "serial correlation coefficient", 
          "spurious regression", 
          "different limit distributions", 
          "first order", 
          "nonstationary time series", 
          "asymptotic behavior", 
          "limit distribution", 
          "dependent data", 
          "bootstrap", 
          "deterministic trend", 
          "bootstrap technique", 
          "stochastic trends", 
          "time series", 
          "convergence", 
          "coefficient", 
          "bootstrap regression", 
          "residuals", 
          "unity", 
          "correlation coefficient", 
          "order", 
          "regression", 
          "distribution", 
          "technique", 
          "behavior", 
          "results", 
          "analysis", 
          "data", 
          "series", 
          "use", 
          "trends", 
          "pitfalls", 
          "rate", 
          "slower rate", 
          "warning", 
          "failure", 
          "routine use", 
          "method"
        ], 
        "name": "Pitfalls in Bootstrapping Spurious Regression", 
        "pagination": "163-217", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1143569545"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40953-021-00268-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40953-021-00268-6", 
          "https://app.dimensions.ai/details/publication/pub.1143569545"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_915.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s40953-021-00268-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40953-021-00268-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40953-021-00268-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40953-021-00268-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40953-021-00268-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    114 TRIPLES      22 PREDICATES      66 URIs      54 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40953-021-00268-6 schema:about anzsrc-for:14
    2 anzsrc-for:1402
    3 anzsrc-for:1403
    4 schema:author N12a2f339fcd845ef80808dc5ef5c90ba
    5 schema:citation sg:pub.10.1007/978-1-4612-1554-7
    6 sg:pub.10.1007/978-1-4612-4384-7
    7 sg:pub.10.1007/978-3-642-48850-4_14
    8 schema:datePublished 2021-12-03
    9 schema:datePublishedReg 2021-12-03
    10 schema:description The bootstrap is shown to be inconsistent in spurious regression. The failure of the bootstrap is spectacular in that the bootstrap effectively turns a spurious regression into a cointegrating regression. In particular, the serial correlation coefficient of the residuals in the bootstrap regression does not converge to unity, so the bootstrap is not even first order consistent. The block bootstrap serial correlation coefficient does converge to unity and is therefore first order consistent, but has a slower rate of convergence and a different limit distribution from that of the sample data serial correlation coefficient. The analysis covers spurious regressions involving both deterministic trends and stochastic trends. Methods are developed for analyzing the asymptotic behavior of bootstrap techniques with nonstationary time series and the results reinforce longstanding warnings about routine use of the bootstrap with dependent data.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N765e3319a5944aa09f7c9b6877baa97d
    15 Nfa1d6373e36c49b28b5a3163316d838d
    16 sg:journal.1027984
    17 schema:keywords analysis
    18 asymptotic behavior
    19 behavior
    20 bootstrap
    21 bootstrap regression
    22 bootstrap technique
    23 coefficient
    24 convergence
    25 correlation coefficient
    26 data
    27 dependent data
    28 deterministic trend
    29 different limit distributions
    30 distribution
    31 failure
    32 first order
    33 limit distribution
    34 method
    35 nonstationary time series
    36 order
    37 pitfalls
    38 rate
    39 regression
    40 residuals
    41 results
    42 routine use
    43 serial correlation coefficient
    44 series
    45 slower rate
    46 spurious regression
    47 stochastic trends
    48 technique
    49 time series
    50 trends
    51 unity
    52 use
    53 warning
    54 schema:name Pitfalls in Bootstrapping Spurious Regression
    55 schema:pagination 163-217
    56 schema:productId N8c4cf632105c4e9ab5cf23f78774d1dc
    57 Nec034be680604a8fa09c54badc4dea1a
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143569545
    59 https://doi.org/10.1007/s40953-021-00268-6
    60 schema:sdDatePublished 2022-05-20T07:39
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher Nfced526106c448c2a44c3e7350fa77c8
    63 schema:url https://doi.org/10.1007/s40953-021-00268-6
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N12a2f339fcd845ef80808dc5ef5c90ba rdf:first sg:person.011774746303.20
    68 rdf:rest rdf:nil
    69 N765e3319a5944aa09f7c9b6877baa97d schema:issueNumber Suppl 1
    70 rdf:type schema:PublicationIssue
    71 N8c4cf632105c4e9ab5cf23f78774d1dc schema:name dimensions_id
    72 schema:value pub.1143569545
    73 rdf:type schema:PropertyValue
    74 Nec034be680604a8fa09c54badc4dea1a schema:name doi
    75 schema:value 10.1007/s40953-021-00268-6
    76 rdf:type schema:PropertyValue
    77 Nfa1d6373e36c49b28b5a3163316d838d schema:volumeNumber 19
    78 rdf:type schema:PublicationVolume
    79 Nfced526106c448c2a44c3e7350fa77c8 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Economics
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Applied Economics
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Econometrics
    89 rdf:type schema:DefinedTerm
    90 sg:journal.1027984 schema:issn 0971-1554
    91 2364-1045
    92 schema:name Journal of Quantitative Economics
    93 schema:publisher Springer Nature
    94 rdf:type schema:Periodical
    95 sg:person.011774746303.20 schema:affiliation grid-institutes:grid.5491.9
    96 schema:familyName Phillips
    97 schema:givenName Peter C. B.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011774746303.20
    99 rdf:type schema:Person
    100 sg:pub.10.1007/978-1-4612-1554-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027828984
    101 https://doi.org/10.1007/978-1-4612-1554-7
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/978-1-4612-4384-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045715699
    104 https://doi.org/10.1007/978-1-4612-4384-7
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/978-3-642-48850-4_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024621750
    107 https://doi.org/10.1007/978-3-642-48850-4_14
    108 rdf:type schema:CreativeWork
    109 grid-institutes:grid.5491.9 schema:alternateName University of Southampton, Southampton, England
    110 schema:name Singapore Management University, Singapore, Singapore
    111 University of Auckland, Auckland, New Zealand
    112 University of Southampton, Southampton, England
    113 Yale University, New Haven, USA
    114 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...