Evaluation of stimulated reservoir volume in laboratory hydraulic fracturing with oil, water and liquid carbon dioxide under microscopy using the ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03

AUTHORS

Ziad Bennour, Shouta Watanabe, Youqing Chen, Tsuyoshi Ishida, Takashi Akai

ABSTRACT

In shale gas industry, it is desired to develop new reservoir fracturing and enhanced gas recovery technologies to replace the conventional hydraulic fracturing (HF), in order to reduce water usage to guarantee the environmental sustainability and boost individual well production. As the goal of HF is to create high conductivity fracturing networks as flow paths for gas, it is necessary for HF to activate and connect existing natural fractures to generate large fractures network. The success or failure of HF often depends on the stimulated reservoir volume (SRV) which is characterized by the quantity and the quality of the fractures network resulted. This study investigates the micro-fractures network resulted in laboratory HF experiments in 2-D thin polished section by using a fluorescent method supported by advanced computerized image analysis. To evaluate difference of resulted SRV due to the difference of fracturing fluid, using three cylindrical shale cores and three granite cubes having fractures induced by HF using three fluids having different viscosity; oil, water and liquid carbon dioxide (L-CO2). The observation and statistical analysis of fractures induced in HF by the three different fluid viscosities using the fluorescent method showed ability of L-CO2 injection to achieve effective stimulation. The results suggest that employing a low viscosity fluid in HF of shale reservoirs can achieve more productive network with better SRV. In addition, the observation seems to be consistent with the tendency observed in the previous researches. More... »

PAGES

39-50

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40948-017-0073-3

DOI

http://dx.doi.org/10.1007/s40948-017-0073-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091425501


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Graduate School of Engineering, Kyoto University, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bennour", 
        "givenName": "Ziad", 
        "id": "sg:person.015734465505.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015734465505.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Graduate School of Energy Sciences, Kyoto University, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Shouta", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Graduate School of Energy Sciences, Kyoto University, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Youqing", 
        "id": "sg:person.011272513003.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011272513003.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Graduate School of Engineering, Kyoto University, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishida", 
        "givenName": "Tsuyoshi", 
        "id": "sg:person.014660335151.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014660335151.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Oil Gas and Metals National Corporation (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.482819.e", 
          "name": [
            "Japan Oil, Gas and Metals National Corporation (JOGMEC), Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akai", 
        "givenName": "Takashi", 
        "id": "sg:person.015574664315.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574664315.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijggc.2013.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000094601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/92jb02298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001313168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.marpetgeo.2008.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005272881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coal.2013.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005523279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2012gl052788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006796796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00603-015-0774-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006912033", 
          "https://doi.org/10.1007/s00603-015-0774-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.earscirev.2013.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014554982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2013.09.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019232677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1876-3804(13)60051-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023792860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coal.2014.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030647407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(94)90904-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032466476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(94)90904-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032466476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0098-3004(00)00116-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033450915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-7952(03)00074-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033971227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2015.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036791605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2015.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036791605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2015.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036791605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2015.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036791605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coal.2010.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044757777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2012.06.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045052879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016jb013365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047718127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cemconres.2012.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050749595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5772/56261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052642081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1791651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062074637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/115769-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068947887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/119890-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068948224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/144317-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068950475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/36361-jpt", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068956512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/87-05-01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068960771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/174946-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096112755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/2009-124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096980829"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03", 
    "datePublishedReg": "2018-03-01", 
    "description": "In shale gas industry, it is desired to develop new reservoir fracturing and enhanced gas recovery technologies to replace the conventional hydraulic fracturing (HF), in order to reduce water usage to guarantee the environmental sustainability and boost individual well production. As the goal of HF is to create high conductivity fracturing networks as flow paths for gas, it is necessary for HF to activate and connect existing natural fractures to generate large fractures network. The success or failure of HF often depends on the stimulated reservoir volume (SRV) which is characterized by the quantity and the quality of the fractures network resulted. This study investigates the micro-fractures network resulted in laboratory HF experiments in 2-D thin polished section by using a fluorescent method supported by advanced computerized image analysis. To evaluate difference of resulted SRV due to the difference of fracturing fluid, using three cylindrical shale cores and three granite cubes having fractures induced by HF using three fluids having different viscosity; oil, water and liquid carbon dioxide (L-CO2). The observation and statistical analysis of fractures induced in HF by the three different fluid viscosities using the fluorescent method showed ability of L-CO2 injection to achieve effective stimulation. The results suggest that employing a low viscosity fluid in HF of shale reservoirs can achieve more productive network with better SRV. In addition, the observation seems to be consistent with the tendency observed in the previous researches.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40948-017-0073-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135968", 
        "issn": [
          "2363-8419", 
          "2363-8427"
        ], 
        "name": "Geomechanics and Geophysics for Geo-Energy and Geo-Resources", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Evaluation of stimulated reservoir volume in laboratory hydraulic fracturing with oil, water and liquid carbon dioxide under microscopy using the fluorescence method", 
    "pagination": "39-50", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8923e7e8e3143df79ed0473e687b2fef37c6dfee445b5ce6efbb2244158b2c20"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40948-017-0073-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091425501"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40948-017-0073-3", 
      "https://app.dimensions.ai/details/publication/pub.1091425501"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29207_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s40948-017-0073-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40948-017-0073-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40948-017-0073-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40948-017-0073-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40948-017-0073-3'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40948-017-0073-3 schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author Na616bc4a01c54cf784853963a132605c
4 schema:citation sg:pub.10.1007/s00603-015-0774-2
5 https://doi.org/10.1002/2016jb013365
6 https://doi.org/10.1016/0148-9062(94)90904-0
7 https://doi.org/10.1016/j.apenergy.2015.03.023
8 https://doi.org/10.1016/j.cemconres.2012.08.014
9 https://doi.org/10.1016/j.coal.2010.08.003
10 https://doi.org/10.1016/j.coal.2013.05.007
11 https://doi.org/10.1016/j.coal.2014.04.014
12 https://doi.org/10.1016/j.earscirev.2013.04.003
13 https://doi.org/10.1016/j.fuel.2012.06.119
14 https://doi.org/10.1016/j.fuel.2013.09.046
15 https://doi.org/10.1016/j.ijggc.2013.04.018
16 https://doi.org/10.1016/j.marpetgeo.2008.06.004
17 https://doi.org/10.1016/s0013-7952(03)00074-7
18 https://doi.org/10.1016/s0098-3004(00)00116-3
19 https://doi.org/10.1016/s1876-3804(13)60051-8
20 https://doi.org/10.1029/2012gl052788
21 https://doi.org/10.1029/92jb02298
22 https://doi.org/10.1115/1.1791651
23 https://doi.org/10.2118/115769-pa
24 https://doi.org/10.2118/119890-pa
25 https://doi.org/10.2118/144317-pa
26 https://doi.org/10.2118/174946-ms
27 https://doi.org/10.2118/2009-124
28 https://doi.org/10.2118/36361-jpt
29 https://doi.org/10.2118/87-05-01
30 https://doi.org/10.5772/56261
31 schema:datePublished 2018-03
32 schema:datePublishedReg 2018-03-01
33 schema:description In shale gas industry, it is desired to develop new reservoir fracturing and enhanced gas recovery technologies to replace the conventional hydraulic fracturing (HF), in order to reduce water usage to guarantee the environmental sustainability and boost individual well production. As the goal of HF is to create high conductivity fracturing networks as flow paths for gas, it is necessary for HF to activate and connect existing natural fractures to generate large fractures network. The success or failure of HF often depends on the stimulated reservoir volume (SRV) which is characterized by the quantity and the quality of the fractures network resulted. This study investigates the micro-fractures network resulted in laboratory HF experiments in 2-D thin polished section by using a fluorescent method supported by advanced computerized image analysis. To evaluate difference of resulted SRV due to the difference of fracturing fluid, using three cylindrical shale cores and three granite cubes having fractures induced by HF using three fluids having different viscosity; oil, water and liquid carbon dioxide (L-CO2). The observation and statistical analysis of fractures induced in HF by the three different fluid viscosities using the fluorescent method showed ability of L-CO2 injection to achieve effective stimulation. The results suggest that employing a low viscosity fluid in HF of shale reservoirs can achieve more productive network with better SRV. In addition, the observation seems to be consistent with the tendency observed in the previous researches.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N44e97ed9257e440fa2ce6a752ccaf7ec
38 Na3c435f5bef3490a86705b1a4a5dd56f
39 sg:journal.1135968
40 schema:name Evaluation of stimulated reservoir volume in laboratory hydraulic fracturing with oil, water and liquid carbon dioxide under microscopy using the fluorescence method
41 schema:pagination 39-50
42 schema:productId N2c9fcbf62d804e258a5210d1769c9179
43 Nb1aeaf6a10af48128d236eb164b4655c
44 Ne3f57840ef6c46d6b9ad7bddfdd1dc91
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091425501
46 https://doi.org/10.1007/s40948-017-0073-3
47 schema:sdDatePublished 2019-04-11T11:55
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nb25a99313795494f83f06a7b44f0038b
50 schema:url http://link.springer.com/10.1007/s40948-017-0073-3
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N2c9fcbf62d804e258a5210d1769c9179 schema:name readcube_id
55 schema:value 8923e7e8e3143df79ed0473e687b2fef37c6dfee445b5ce6efbb2244158b2c20
56 rdf:type schema:PropertyValue
57 N44e97ed9257e440fa2ce6a752ccaf7ec schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 N67b8e002b8f44248a3737d8331f66177 rdf:first Naec81854c3584a3395f853a159b64e08
60 rdf:rest N9b9bbc9ec2514d028f6380e9960ef40b
61 N7ca26aa4430d48e2806ccd9864323ce0 rdf:first sg:person.015574664315.82
62 rdf:rest rdf:nil
63 N9b9bbc9ec2514d028f6380e9960ef40b rdf:first sg:person.011272513003.40
64 rdf:rest Ndeb16af067694db890144c96338ae7af
65 Na3c435f5bef3490a86705b1a4a5dd56f schema:volumeNumber 4
66 rdf:type schema:PublicationVolume
67 Na616bc4a01c54cf784853963a132605c rdf:first sg:person.015734465505.65
68 rdf:rest N67b8e002b8f44248a3737d8331f66177
69 Naec81854c3584a3395f853a159b64e08 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
70 schema:familyName Watanabe
71 schema:givenName Shouta
72 rdf:type schema:Person
73 Nb1aeaf6a10af48128d236eb164b4655c schema:name dimensions_id
74 schema:value pub.1091425501
75 rdf:type schema:PropertyValue
76 Nb25a99313795494f83f06a7b44f0038b schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Ndeb16af067694db890144c96338ae7af rdf:first sg:person.014660335151.60
79 rdf:rest N7ca26aa4430d48e2806ccd9864323ce0
80 Ne3f57840ef6c46d6b9ad7bddfdd1dc91 schema:name doi
81 schema:value 10.1007/s40948-017-0073-3
82 rdf:type schema:PropertyValue
83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
84 schema:name Engineering
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
87 schema:name Resources Engineering and Extractive Metallurgy
88 rdf:type schema:DefinedTerm
89 sg:journal.1135968 schema:issn 2363-8419
90 2363-8427
91 schema:name Geomechanics and Geophysics for Geo-Energy and Geo-Resources
92 rdf:type schema:Periodical
93 sg:person.011272513003.40 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
94 schema:familyName Chen
95 schema:givenName Youqing
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011272513003.40
97 rdf:type schema:Person
98 sg:person.014660335151.60 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
99 schema:familyName Ishida
100 schema:givenName Tsuyoshi
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014660335151.60
102 rdf:type schema:Person
103 sg:person.015574664315.82 schema:affiliation https://www.grid.ac/institutes/grid.482819.e
104 schema:familyName Akai
105 schema:givenName Takashi
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574664315.82
107 rdf:type schema:Person
108 sg:person.015734465505.65 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
109 schema:familyName Bennour
110 schema:givenName Ziad
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015734465505.65
112 rdf:type schema:Person
113 sg:pub.10.1007/s00603-015-0774-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006912033
114 https://doi.org/10.1007/s00603-015-0774-2
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/2016jb013365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047718127
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0148-9062(94)90904-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032466476
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.apenergy.2015.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036791605
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.cemconres.2012.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050749595
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.coal.2010.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044757777
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.coal.2013.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005523279
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.coal.2014.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030647407
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.earscirev.2013.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014554982
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.fuel.2012.06.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045052879
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.fuel.2013.09.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019232677
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.ijggc.2013.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000094601
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.marpetgeo.2008.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005272881
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0013-7952(03)00074-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033971227
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0098-3004(00)00116-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033450915
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s1876-3804(13)60051-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023792860
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1029/2012gl052788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006796796
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1029/92jb02298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001313168
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1115/1.1791651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062074637
151 rdf:type schema:CreativeWork
152 https://doi.org/10.2118/115769-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068947887
153 rdf:type schema:CreativeWork
154 https://doi.org/10.2118/119890-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068948224
155 rdf:type schema:CreativeWork
156 https://doi.org/10.2118/144317-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068950475
157 rdf:type schema:CreativeWork
158 https://doi.org/10.2118/174946-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096112755
159 rdf:type schema:CreativeWork
160 https://doi.org/10.2118/2009-124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096980829
161 rdf:type schema:CreativeWork
162 https://doi.org/10.2118/36361-jpt schema:sameAs https://app.dimensions.ai/details/publication/pub.1068956512
163 rdf:type schema:CreativeWork
164 https://doi.org/10.2118/87-05-01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068960771
165 rdf:type schema:CreativeWork
166 https://doi.org/10.5772/56261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052642081
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
169 schema:name Graduate School of Energy Sciences, Kyoto University, Kyoto, Japan
170 Graduate School of Engineering, Kyoto University, Kyoto, Japan
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.482819.e schema:alternateName Japan Oil Gas and Metals National Corporation (Japan)
173 schema:name Japan Oil, Gas and Metals National Corporation (JOGMEC), Chiba, Japan
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...