Who wins in the Indian parliament election: Criminals, wealthy and incumbents? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10

AUTHORS

P. Duraisamy, Bruno Jérôme

ABSTRACT

The study examines the impact of criminal charges, wealth, incumbency status, and party affiliation of the candidates on their chances of winning and vote share in the Indian parliamentary election 2009 using candidate level information on 8070 contestants from 543 constituencies. The descriptive and econometric analyses of the data reveal that there is a strong association between wealth, criminal charges and incumbency status of the candidates and the electoral outcomes. Wealthy incumbent candidates had higher chances of winning the election, and these candidates also seem to be facing criminal charges. The incumbent candidates belonging to the state ruling party had higher chances of winning and increasing their vote share. Though criminal charges depress the chance of winning and vote share, the incumbency effects, particularly the party incumbency, has a bigger effect than criminality and wealth status. More... »

PAGES

245-262

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40847-017-0044-0

DOI

http://dx.doi.org/10.1007/s40847-017-0044-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086153058


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Madras", 
          "id": "https://www.grid.ac/institutes/grid.413015.2", 
          "name": [
            "University of Madras, 600 005, Chepauk, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duraisamy", 
        "givenName": "P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Panth\u00e9on-Assas University", 
          "id": "https://www.grid.ac/institutes/grid.33831.3a", 
          "name": [
            "Ma\u00eetres de Conf\u00e9rences sciences economiques, Universite Panth\u00e9on-Assas (Paris II), Centre Assas - Bureau 611, 75006, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "J\u00e9r\u00f4me", 
        "givenName": "Bruno", 
        "id": "sg:person.016132062155.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016132062155.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.electstud.2007.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024157481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1468-0343.2009.00358.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025861796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1468-0343.2009.00358.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025861796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11127-008-9336-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032551270", 
          "https://doi.org/10.1007/s11127-008-9336-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2007.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046951034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijforecast.2009.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047110173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2111327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069767022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2111475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069767157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/440290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070584601"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10", 
    "datePublishedReg": "2017-10-01", 
    "description": "The study examines the impact of criminal charges, wealth, incumbency status, and party affiliation of the candidates on their chances of winning and vote share in the Indian parliamentary election 2009 using candidate level information on 8070 contestants from 543 constituencies. The descriptive and econometric analyses of the data reveal that there is a strong association between wealth, criminal charges and incumbency status of the candidates and the electoral outcomes. Wealthy incumbent candidates had higher chances of winning the election, and these candidates also seem to be facing criminal charges. The incumbent candidates belonging to the state ruling party had higher chances of winning and increasing their vote share. Though criminal charges depress the chance of winning and vote share, the incumbency effects, particularly the party incumbency, has a bigger effect than criminality and wealth status.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40847-017-0044-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136264", 
        "issn": [
          "0972-5792", 
          "2199-6873"
        ], 
        "name": "Journal of Social and Economic Development", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Who wins in the Indian parliament election: Criminals, wealthy and incumbents?", 
    "pagination": "245-262", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "28967e907b1afc64c0b1f60050ae81117386a0ccf89a0589c60910fd2286e4eb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40847-017-0044-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086153058"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40847-017-0044-0", 
      "https://app.dimensions.ai/details/publication/pub.1086153058"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89793_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40847-017-0044-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40847-017-0044-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40847-017-0044-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40847-017-0044-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40847-017-0044-0'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40847-017-0044-0 schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author N160d692f10f445d2a31031d23c236fa0
4 schema:citation sg:pub.10.1007/s11127-008-9336-4
5 https://doi.org/10.1016/j.electstud.2007.10.006
6 https://doi.org/10.1016/j.ijforecast.2009.03.002
7 https://doi.org/10.1016/j.jeconom.2007.05.004
8 https://doi.org/10.1111/j.1468-0343.2009.00358.x
9 https://doi.org/10.2307/2111327
10 https://doi.org/10.2307/2111475
11 https://doi.org/10.2307/440290
12 schema:datePublished 2017-10
13 schema:datePublishedReg 2017-10-01
14 schema:description The study examines the impact of criminal charges, wealth, incumbency status, and party affiliation of the candidates on their chances of winning and vote share in the Indian parliamentary election 2009 using candidate level information on 8070 contestants from 543 constituencies. The descriptive and econometric analyses of the data reveal that there is a strong association between wealth, criminal charges and incumbency status of the candidates and the electoral outcomes. Wealthy incumbent candidates had higher chances of winning the election, and these candidates also seem to be facing criminal charges. The incumbent candidates belonging to the state ruling party had higher chances of winning and increasing their vote share. Though criminal charges depress the chance of winning and vote share, the incumbency effects, particularly the party incumbency, has a bigger effect than criminality and wealth status.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf Ndabd1d9f56fa431a99d2901abf307941
19 Nfe6ac02eb4c74b9ea457f8083037a08b
20 sg:journal.1136264
21 schema:name Who wins in the Indian parliament election: Criminals, wealthy and incumbents?
22 schema:pagination 245-262
23 schema:productId N45509956fd3845f6a43f4d3198c27a47
24 Nd4e5f4f332224085a71f29802ea90e42
25 Nf7aac2faaff947fcb320e78ae4bad2d6
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086153058
27 https://doi.org/10.1007/s40847-017-0044-0
28 schema:sdDatePublished 2019-04-11T09:53
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Ne02a81aa47f74bf3a55afd459ed1a91f
31 schema:url https://link.springer.com/10.1007%2Fs40847-017-0044-0
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N160d692f10f445d2a31031d23c236fa0 rdf:first Ndc6a79f62be14af5a0a74a9b710829b0
36 rdf:rest Nb0254726b3ec4809946c3fdf72f53839
37 N45509956fd3845f6a43f4d3198c27a47 schema:name doi
38 schema:value 10.1007/s40847-017-0044-0
39 rdf:type schema:PropertyValue
40 Nb0254726b3ec4809946c3fdf72f53839 rdf:first sg:person.016132062155.93
41 rdf:rest rdf:nil
42 Nd4e5f4f332224085a71f29802ea90e42 schema:name dimensions_id
43 schema:value pub.1086153058
44 rdf:type schema:PropertyValue
45 Ndabd1d9f56fa431a99d2901abf307941 schema:issueNumber 2
46 rdf:type schema:PublicationIssue
47 Ndc6a79f62be14af5a0a74a9b710829b0 schema:affiliation https://www.grid.ac/institutes/grid.413015.2
48 schema:familyName Duraisamy
49 schema:givenName P.
50 rdf:type schema:Person
51 Ne02a81aa47f74bf3a55afd459ed1a91f schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 Nf7aac2faaff947fcb320e78ae4bad2d6 schema:name readcube_id
54 schema:value 28967e907b1afc64c0b1f60050ae81117386a0ccf89a0589c60910fd2286e4eb
55 rdf:type schema:PropertyValue
56 Nfe6ac02eb4c74b9ea457f8083037a08b schema:volumeNumber 19
57 rdf:type schema:PublicationVolume
58 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
59 schema:name Economics
60 rdf:type schema:DefinedTerm
61 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
62 schema:name Econometrics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136264 schema:issn 0972-5792
65 2199-6873
66 schema:name Journal of Social and Economic Development
67 rdf:type schema:Periodical
68 sg:person.016132062155.93 schema:affiliation https://www.grid.ac/institutes/grid.33831.3a
69 schema:familyName Jérôme
70 schema:givenName Bruno
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016132062155.93
72 rdf:type schema:Person
73 sg:pub.10.1007/s11127-008-9336-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032551270
74 https://doi.org/10.1007/s11127-008-9336-4
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1016/j.electstud.2007.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024157481
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/j.ijforecast.2009.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047110173
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/j.jeconom.2007.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046951034
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1111/j.1468-0343.2009.00358.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025861796
83 rdf:type schema:CreativeWork
84 https://doi.org/10.2307/2111327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069767022
85 rdf:type schema:CreativeWork
86 https://doi.org/10.2307/2111475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069767157
87 rdf:type schema:CreativeWork
88 https://doi.org/10.2307/440290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070584601
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.33831.3a schema:alternateName Panthéon-Assas University
91 schema:name Maîtres de Conférences sciences economiques, Universite Panthéon-Assas (Paris II), Centre Assas - Bureau 611, 75006, Paris, France
92 rdf:type schema:Organization
93 https://www.grid.ac/institutes/grid.413015.2 schema:alternateName University of Madras
94 schema:name University of Madras, 600 005, Chepauk, Chennai, India
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...