Optimization of Recurrence Quantification Analysis for Detecting the Presence of Multiple Sclerosis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-30

AUTHORS

Simona Carrubba, Clifton Frilot, Andrew A. Marino

ABSTRACT

The visual patterns in recurrence plots of time-series data can be quantified using recurrence quantification analysis (RQA), a phase-space-based method. The ability to quantitate recurrence plots affords the possibility of using them to solve central biomedical problems, for example detecting the presence of neurological diseases. Our goal was to assess this application by statistically comparing the values of plot-based quantifiers of electroencephalograms (EEGs) from patients having multiple sclerosis (MS) with values from the EEGs of control subjects. First, employing a model system consisting of the addition of known deterministic signals to the EEG of normal subjects, we empirically identified the embedding conditions that facilitated detection of the effect of the addition of the signals. Second, we used the conditions thus identified to compare EEGs from 10 patients with MS and 10 age- and gender-matched control subjects, using seven standard recurrence-plot quantifiers. We identify embedding dimension of 5 points and time delay of 5 points as conditions that maximize the ability of RQA to detect the presence of deterministic activity in EEGs time series sampled at 500 Hz. The values of the RQA quantifiers computed from the EEGs of the MS patients were significantly greater than the corresponding values from the controls, indicating that the presence of the disease was associated with detectable changes in the EEG (family-wise error < 0.05%). Recurrence plots detected the occurrence of alterations in EEGs associated with the presence of MS, indicating a decreased complexity (increased order) of brain electrical activity associated with brain disease. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40846-019-00462-1

DOI

http://dx.doi.org/10.1007/s40846-019-00462-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111774395


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mercyhurst University", 
          "id": "https://www.grid.ac/institutes/grid.419747.8", 
          "name": [
            "Department of Physics, Mercyhurst University, 501 E. 38th St, 16546, Erie, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carrubba", 
        "givenName": "Simona", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Louisiana State University Health Sciences Center Shreveport", 
          "id": "https://www.grid.ac/institutes/grid.411417.6", 
          "name": [
            "School of Allied Health Professions, Louisiana State University Health Sciences Center, 71130, Shreveport, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frilot", 
        "givenName": "Clifton", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Louisiana State University Health Sciences Center Shreveport", 
          "id": "https://www.grid.ac/institutes/grid.411417.6", 
          "name": [
            "Department of Neurology, Louisiana State University Health Sciences Center, 71130, Shreveport, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marino", 
        "givenName": "Andrew A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1179/016164109x12536042424135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003134904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.33.11.1444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005727777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2016.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007990657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40846-015-0022-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011861644", 
          "https://doi.org/10.1007/s40846-015-0022-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2004.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013713448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.medengphy.2010.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015797924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2007.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017321340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jphysparis.2009.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019414860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10072-010-0398-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024090798", 
          "https://doi.org/10.1007/s10072-010-0398-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10072-010-0398-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024090798", 
          "https://doi.org/10.1007/s10072-010-0398-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neulet.2004.05.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024510364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(92)90426-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025032686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(92)90426-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025032686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroscience.2006.08.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027459279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2012.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028387275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2006.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029949808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.69.2.192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032659571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00221-005-0094-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033036359", 
          "https://doi.org/10.1007/s00221-005-0094-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00221-005-0094-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033036359", 
          "https://doi.org/10.1007/s00221-005-0094-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0763-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033688069", 
          "https://doi.org/10.1007/978-1-4612-0763-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0763-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033688069", 
          "https://doi.org/10.1007/978-1-4612-0763-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.1032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036110463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.026702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036599860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.026702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036599860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.4184-11.2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037849277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0113897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040241771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2008.0197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043422162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0902455106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044539623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2008.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050147420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2015.05.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050927302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2015.05.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050927302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/22547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052255062", 
          "https://doi.org/10.1038/22547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/22547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052255062", 
          "https://doi.org/10.1038/22547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.166372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057742163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.33.1134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060474177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.33.1134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060474177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/4/9/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064230992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jad-2010-1290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078049014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1995.78.3.814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082502270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1994.76.2.965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082686956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpsycho.2017.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090660684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awx217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091055727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13246-017-0584-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091510952", 
          "https://doi.org/10.1007/s13246-017-0584-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0194462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103174774"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-30", 
    "datePublishedReg": "2019-01-30", 
    "description": "The visual patterns in recurrence plots of time-series data can be quantified using recurrence quantification analysis (RQA), a phase-space-based method. The ability to quantitate recurrence plots affords the possibility of using them to solve central biomedical problems, for example detecting the presence of neurological diseases. Our goal was to assess this application by statistically comparing the values of plot-based quantifiers of electroencephalograms (EEGs) from patients having multiple sclerosis (MS) with values from the EEGs of control subjects. First, employing a model system consisting of the addition of known deterministic signals to the EEG of normal subjects, we empirically identified the embedding conditions that facilitated detection of the effect of the addition of the signals. Second, we used the conditions thus identified to compare EEGs from 10 patients with MS and 10 age- and gender-matched control subjects, using seven standard recurrence-plot quantifiers. We identify embedding dimension of 5 points and time delay of 5 points as conditions that maximize the ability of RQA to detect the presence of deterministic activity in EEGs time series sampled at 500 Hz. The values of the RQA quantifiers computed from the EEGs of the MS patients were significantly greater than the corresponding values from the controls, indicating that the presence of the disease was associated with detectable changes in the EEG (family-wise error < 0.05%). Recurrence plots detected the occurrence of alterations in EEGs associated with the presence of MS, indicating a decreased complexity (increased order) of brain electrical activity associated with brain disease.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40846-019-00462-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294980", 
        "issn": [
          "1609-0985", 
          "2199-4757"
        ], 
        "name": "Journal of Medical and Biological Engineering", 
        "type": "Periodical"
      }
    ], 
    "name": "Optimization of Recurrence Quantification Analysis for Detecting the Presence of Multiple Sclerosis", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6ecba0f13e80a05de2103a7615ac70558b56a8fa2ed0020f00ff6fc131325bb7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40846-019-00462-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111774395"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40846-019-00462-1", 
      "https://app.dimensions.ai/details/publication/pub.1111774395"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000327_0000000327/records_114976_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40846-019-00462-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40846-019-00462-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40846-019-00462-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40846-019-00462-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40846-019-00462-1'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      60 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40846-019-00462-1 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N21d54b7c7c59416486bd3051e69f9f21
4 schema:citation sg:pub.10.1007/978-1-4612-0763-4
5 sg:pub.10.1007/s00221-005-0094-y
6 sg:pub.10.1007/s10072-010-0398-y
7 sg:pub.10.1007/s13246-017-0584-9
8 sg:pub.10.1007/s40846-015-0022-y
9 sg:pub.10.1038/22547
10 https://doi.org/10.1002/ana.1032
11 https://doi.org/10.1016/0375-9601(92)90426-m
12 https://doi.org/10.1016/j.clinph.2004.01.001
13 https://doi.org/10.1016/j.clinph.2008.04.005
14 https://doi.org/10.1016/j.clinph.2015.05.029
15 https://doi.org/10.1016/j.clinph.2016.10.002
16 https://doi.org/10.1016/j.ijpsycho.2017.07.006
17 https://doi.org/10.1016/j.jneumeth.2006.03.022
18 https://doi.org/10.1016/j.jneumeth.2012.04.018
19 https://doi.org/10.1016/j.jphysparis.2009.05.007
20 https://doi.org/10.1016/j.medengphy.2010.06.006
21 https://doi.org/10.1016/j.neulet.2004.05.025
22 https://doi.org/10.1016/j.neuroimage.2007.08.008
23 https://doi.org/10.1016/j.neuroscience.2006.08.068
24 https://doi.org/10.1063/1.166372
25 https://doi.org/10.1073/pnas.0902455106
26 https://doi.org/10.1093/brain/awx217
27 https://doi.org/10.1098/rsta.2008.0197
28 https://doi.org/10.1103/physreva.33.1134
29 https://doi.org/10.1103/physreve.66.026702
30 https://doi.org/10.1136/jnnp.69.2.192
31 https://doi.org/10.1152/jappl.1994.76.2.965
32 https://doi.org/10.1152/jappl.1995.78.3.814
33 https://doi.org/10.1179/016164109x12536042424135
34 https://doi.org/10.1209/0295-5075/4/9/004
35 https://doi.org/10.1212/wnl.33.11.1444
36 https://doi.org/10.1371/journal.pone.0113897
37 https://doi.org/10.1371/journal.pone.0194462
38 https://doi.org/10.1523/jneurosci.4184-11.2011
39 https://doi.org/10.3233/jad-2010-1290
40 schema:datePublished 2019-01-30
41 schema:datePublishedReg 2019-01-30
42 schema:description The visual patterns in recurrence plots of time-series data can be quantified using recurrence quantification analysis (RQA), a phase-space-based method. The ability to quantitate recurrence plots affords the possibility of using them to solve central biomedical problems, for example detecting the presence of neurological diseases. Our goal was to assess this application by statistically comparing the values of plot-based quantifiers of electroencephalograms (EEGs) from patients having multiple sclerosis (MS) with values from the EEGs of control subjects. First, employing a model system consisting of the addition of known deterministic signals to the EEG of normal subjects, we empirically identified the embedding conditions that facilitated detection of the effect of the addition of the signals. Second, we used the conditions thus identified to compare EEGs from 10 patients with MS and 10 age- and gender-matched control subjects, using seven standard recurrence-plot quantifiers. We identify embedding dimension of 5 points and time delay of 5 points as conditions that maximize the ability of RQA to detect the presence of deterministic activity in EEGs time series sampled at 500 Hz. The values of the RQA quantifiers computed from the EEGs of the MS patients were significantly greater than the corresponding values from the controls, indicating that the presence of the disease was associated with detectable changes in the EEG (family-wise error < 0.05%). Recurrence plots detected the occurrence of alterations in EEGs associated with the presence of MS, indicating a decreased complexity (increased order) of brain electrical activity associated with brain disease.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf sg:journal.1294980
47 schema:name Optimization of Recurrence Quantification Analysis for Detecting the Presence of Multiple Sclerosis
48 schema:pagination 1-10
49 schema:productId N5ef2629924eb4514812beaa38aa4c708
50 N99368472e6d24ab8839b8fe4c6fdf8d7
51 Nf7bdedbcd9644d54ac6e050213fa9887
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111774395
53 https://doi.org/10.1007/s40846-019-00462-1
54 schema:sdDatePublished 2019-04-11T08:59
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N560631a321b74b8f8b2e9ff2d656c667
57 schema:url https://link.springer.com/10.1007%2Fs40846-019-00462-1
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N21d54b7c7c59416486bd3051e69f9f21 rdf:first N3e8393e836e74577a04c462b13191052
62 rdf:rest Nd9c48dcd122c4e85bd44f6b384016409
63 N3e8393e836e74577a04c462b13191052 schema:affiliation https://www.grid.ac/institutes/grid.419747.8
64 schema:familyName Carrubba
65 schema:givenName Simona
66 rdf:type schema:Person
67 N4646fcc5af3c4944a068677c2f073862 schema:affiliation https://www.grid.ac/institutes/grid.411417.6
68 schema:familyName Marino
69 schema:givenName Andrew A.
70 rdf:type schema:Person
71 N560631a321b74b8f8b2e9ff2d656c667 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N5ef2629924eb4514812beaa38aa4c708 schema:name readcube_id
74 schema:value 6ecba0f13e80a05de2103a7615ac70558b56a8fa2ed0020f00ff6fc131325bb7
75 rdf:type schema:PropertyValue
76 N87f6a019bb984ea4aeef7227d1ca5855 rdf:first N4646fcc5af3c4944a068677c2f073862
77 rdf:rest rdf:nil
78 N99368472e6d24ab8839b8fe4c6fdf8d7 schema:name dimensions_id
79 schema:value pub.1111774395
80 rdf:type schema:PropertyValue
81 Nb79b75a7d90b49d6818592d8a39b23c2 schema:affiliation https://www.grid.ac/institutes/grid.411417.6
82 schema:familyName Frilot
83 schema:givenName Clifton
84 rdf:type schema:Person
85 Nd9c48dcd122c4e85bd44f6b384016409 rdf:first Nb79b75a7d90b49d6818592d8a39b23c2
86 rdf:rest N87f6a019bb984ea4aeef7227d1ca5855
87 Nf7bdedbcd9644d54ac6e050213fa9887 schema:name doi
88 schema:value 10.1007/s40846-019-00462-1
89 rdf:type schema:PropertyValue
90 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
91 schema:name Medical and Health Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
94 schema:name Neurosciences
95 rdf:type schema:DefinedTerm
96 sg:journal.1294980 schema:issn 1609-0985
97 2199-4757
98 schema:name Journal of Medical and Biological Engineering
99 rdf:type schema:Periodical
100 sg:pub.10.1007/978-1-4612-0763-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033688069
101 https://doi.org/10.1007/978-1-4612-0763-4
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s00221-005-0094-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1033036359
104 https://doi.org/10.1007/s00221-005-0094-y
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s10072-010-0398-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1024090798
107 https://doi.org/10.1007/s10072-010-0398-y
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s13246-017-0584-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091510952
110 https://doi.org/10.1007/s13246-017-0584-9
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s40846-015-0022-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1011861644
113 https://doi.org/10.1007/s40846-015-0022-y
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/22547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052255062
116 https://doi.org/10.1038/22547
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/ana.1032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036110463
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0375-9601(92)90426-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1025032686
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.clinph.2004.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013713448
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.clinph.2008.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050147420
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.clinph.2015.05.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050927302
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.clinph.2016.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007990657
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ijpsycho.2017.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090660684
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jneumeth.2006.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029949808
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jneumeth.2012.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028387275
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jphysparis.2009.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019414860
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.medengphy.2010.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015797924
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.neulet.2004.05.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024510364
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.neuroimage.2007.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017321340
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.neuroscience.2006.08.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027459279
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.166372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057742163
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1073/pnas.0902455106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044539623
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1093/brain/awx217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091055727
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1098/rsta.2008.0197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043422162
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physreva.33.1134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060474177
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physreve.66.026702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036599860
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1136/jnnp.69.2.192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032659571
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1152/jappl.1994.76.2.965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082686956
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1152/jappl.1995.78.3.814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082502270
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1179/016164109x12536042424135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003134904
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1209/0295-5075/4/9/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064230992
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1212/wnl.33.11.1444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005727777
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1371/journal.pone.0113897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040241771
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1371/journal.pone.0194462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103174774
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1523/jneurosci.4184-11.2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037849277
175 rdf:type schema:CreativeWork
176 https://doi.org/10.3233/jad-2010-1290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078049014
177 rdf:type schema:CreativeWork
178 https://www.grid.ac/institutes/grid.411417.6 schema:alternateName Louisiana State University Health Sciences Center Shreveport
179 schema:name Department of Neurology, Louisiana State University Health Sciences Center, 71130, Shreveport, LA, USA
180 School of Allied Health Professions, Louisiana State University Health Sciences Center, 71130, Shreveport, LA, USA
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.419747.8 schema:alternateName Mercyhurst University
183 schema:name Department of Physics, Mercyhurst University, 501 E. 38th St, 16546, Erie, PA, USA
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...