Mechanical-Based Model for Extra-Fine Needle Tip Deflection Until Breaching of Tissue Surface View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

Ryosuke Tsumura, Tomoyuki Miyashita, Hiroyasu Iwata

ABSTRACT

Accurate estimation of needle deflection is necessary to successfully steer the needle to targets located deep inside the body. In particular, the deflection that occurs until the tissue surface is breached differs according to the tissue shape and stiffness. This topic has not been a focus of previous work. In the present paper, we propose a model with which to estimate the needle deflection that occurs until breaching of the tissue surface with consideration of the tissue shape and stiffness. This model comprises a cantilever beam supported by virtual springs that represent the interaction forces between the needle tip and tissue surface. The effects of different insertion angles and tissue stiffness on needle deflection are represented by changing the spring constants. The model was used in experiments involving four different insertion angles (0º, 15º, 30º, and 45º) and three different polyvinyl chloride (PVC) phantoms with different stiffness (100, 75, and 50%). We verified the proposed model with the 80% PVC phantom and showed a maximum error of 0.04 mm. More... »

PAGES

697-706

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40846-017-0359-5

DOI

http://dx.doi.org/10.1007/s40846-017-0359-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099693919


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Waseda University", 
          "id": "https://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Graduate School of Creative Science and Engineering, Waseda University, 40-603, 27 Waseda-cho, Shinjuku-ku, 162-0042, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsumura", 
        "givenName": "Ryosuke", 
        "id": "sg:person.07530031275.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07530031275.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Waseda University", 
          "id": "https://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Faculty of Science and Engineering, Waseda University, 40-603, 27 Waseda-cho, Shinjuku-ku, 162-0042, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyashita", 
        "givenName": "Tomoyuki", 
        "id": "sg:person.01021106734.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021106734.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Waseda University", 
          "id": "https://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Faculty of Science and Engineering, Waseda University, 40-603, 27 Waseda-cho, Shinjuku-ku, 162-0042, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iwata", 
        "givenName": "Hiroyasu", 
        "id": "sg:person.013137231723.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013137231723.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.medengphy.2009.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005514665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10255842.2012.694876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011533764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2014.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014426467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-014-1203-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015372182", 
          "https://doi.org/10.1007/s10439-014-1203-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0278364906065388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017600727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0278364906065388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017600727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-014-1173-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027154012", 
          "https://doi.org/10.1007/s11517-014-1173-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.medengphy.2008.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029106177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.medengphy.2012.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032166418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0278364910369714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032629064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0278364910369714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032629064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-013-0892-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033201498", 
          "https://doi.org/10.1007/s10439-013-0892-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bspc.2007.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034180005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0278364914526627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044665825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0278364914526627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044665825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.medengphy.2006.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046453543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lra.2016.2527065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061375869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lra.2016.2528301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061375877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2004.831542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061526215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2005.847548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061526404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2005.847548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061526404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2012.2204749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2012.2204749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2012.2230991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061785466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4030374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062155652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219519415500797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062997902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2009.5152617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078363339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icra.2015.7139499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093559910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2005.1570348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094528341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/biorob.2006.1639065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094603192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2014.6943172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094769090"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "Accurate estimation of needle deflection is necessary to successfully steer the needle to targets located deep inside the body. In particular, the deflection that occurs until the tissue surface is breached differs according to the tissue shape and stiffness. This topic has not been a focus of previous work. In the present paper, we propose a model with which to estimate the needle deflection that occurs until breaching of the tissue surface with consideration of the tissue shape and stiffness. This model comprises a cantilever beam supported by virtual springs that represent the interaction forces between the needle tip and tissue surface. The effects of different insertion angles and tissue stiffness on needle deflection are represented by changing the spring constants. The model was used in experiments involving four different insertion angles (0\u00ba, 15\u00ba, 30\u00ba, and 45\u00ba) and three different polyvinyl chloride (PVC) phantoms with different stiffness (100, 75, and 50%). We verified the proposed model with the 80% PVC phantom and showed a maximum error of 0.04 mm.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40846-017-0359-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294980", 
        "issn": [
          "1609-0985", 
          "2199-4757"
        ], 
        "name": "Journal of Medical and Biological Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "Mechanical-Based Model for Extra-Fine Needle Tip Deflection Until Breaching of Tissue Surface", 
    "pagination": "697-706", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "335609ad21ed2209782164740c3b48c6e40185e61d79e3b832dc318a8ac2674b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40846-017-0359-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099693919"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40846-017-0359-5", 
      "https://app.dimensions.ai/details/publication/pub.1099693919"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s40846-017-0359-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40846-017-0359-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40846-017-0359-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40846-017-0359-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40846-017-0359-5'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40846-017-0359-5 schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author Ncdda875fae47438187b329ce43fa3f91
4 schema:citation sg:pub.10.1007/s10439-013-0892-5
5 sg:pub.10.1007/s10439-014-1203-5
6 sg:pub.10.1007/s11517-014-1173-7
7 https://doi.org/10.1016/j.bspc.2007.06.003
8 https://doi.org/10.1016/j.compbiomed.2014.07.012
9 https://doi.org/10.1016/j.medengphy.2006.07.003
10 https://doi.org/10.1016/j.medengphy.2008.08.002
11 https://doi.org/10.1016/j.medengphy.2009.07.007
12 https://doi.org/10.1016/j.medengphy.2012.04.007
13 https://doi.org/10.1080/10255842.2012.694876
14 https://doi.org/10.1109/biorob.2006.1639065
15 https://doi.org/10.1109/icra.2015.7139499
16 https://doi.org/10.1109/iros.2014.6943172
17 https://doi.org/10.1109/lra.2016.2527065
18 https://doi.org/10.1109/lra.2016.2528301
19 https://doi.org/10.1109/robot.2005.1570348
20 https://doi.org/10.1109/robot.2009.5152617
21 https://doi.org/10.1109/tbme.2004.831542
22 https://doi.org/10.1109/tbme.2005.847548
23 https://doi.org/10.1109/tbme.2012.2204749
24 https://doi.org/10.1109/tro.2012.2230991
25 https://doi.org/10.1115/1.4030374
26 https://doi.org/10.1142/s0219519415500797
27 https://doi.org/10.1177/0278364906065388
28 https://doi.org/10.1177/0278364910369714
29 https://doi.org/10.1177/0278364914526627
30 schema:datePublished 2018-10
31 schema:datePublishedReg 2018-10-01
32 schema:description Accurate estimation of needle deflection is necessary to successfully steer the needle to targets located deep inside the body. In particular, the deflection that occurs until the tissue surface is breached differs according to the tissue shape and stiffness. This topic has not been a focus of previous work. In the present paper, we propose a model with which to estimate the needle deflection that occurs until breaching of the tissue surface with consideration of the tissue shape and stiffness. This model comprises a cantilever beam supported by virtual springs that represent the interaction forces between the needle tip and tissue surface. The effects of different insertion angles and tissue stiffness on needle deflection are represented by changing the spring constants. The model was used in experiments involving four different insertion angles (0º, 15º, 30º, and 45º) and three different polyvinyl chloride (PVC) phantoms with different stiffness (100, 75, and 50%). We verified the proposed model with the 80% PVC phantom and showed a maximum error of 0.04 mm.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N26c6c5aaad8a4d2cb854131ccc0dcd9b
37 N97286d6ffc494295bd7332dd1d604a5e
38 sg:journal.1294980
39 schema:name Mechanical-Based Model for Extra-Fine Needle Tip Deflection Until Breaching of Tissue Surface
40 schema:pagination 697-706
41 schema:productId N8f2c07c238664243b81a70a9646db590
42 Nb3892b2198234befa1210ad3f899b897
43 Nd4b03ce8238346c8bd684a1d02c57388
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099693919
45 https://doi.org/10.1007/s40846-017-0359-5
46 schema:sdDatePublished 2019-04-10T13:32
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N52824bef1e1e46c1a8b75aabdee433ce
49 schema:url http://link.springer.com/10.1007/s40846-017-0359-5
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N26c6c5aaad8a4d2cb854131ccc0dcd9b schema:volumeNumber 38
54 rdf:type schema:PublicationVolume
55 N387cacd7a1534d9fab75db3dcbcd029f rdf:first sg:person.01021106734.61
56 rdf:rest Nf23d389056c64fb48ddf876c0be5e29e
57 N52824bef1e1e46c1a8b75aabdee433ce schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N8f2c07c238664243b81a70a9646db590 schema:name readcube_id
60 schema:value 335609ad21ed2209782164740c3b48c6e40185e61d79e3b832dc318a8ac2674b
61 rdf:type schema:PropertyValue
62 N97286d6ffc494295bd7332dd1d604a5e schema:issueNumber 5
63 rdf:type schema:PublicationIssue
64 Nb3892b2198234befa1210ad3f899b897 schema:name dimensions_id
65 schema:value pub.1099693919
66 rdf:type schema:PropertyValue
67 Ncdda875fae47438187b329ce43fa3f91 rdf:first sg:person.07530031275.44
68 rdf:rest N387cacd7a1534d9fab75db3dcbcd029f
69 Nd4b03ce8238346c8bd684a1d02c57388 schema:name doi
70 schema:value 10.1007/s40846-017-0359-5
71 rdf:type schema:PropertyValue
72 Nf23d389056c64fb48ddf876c0be5e29e rdf:first sg:person.013137231723.09
73 rdf:rest rdf:nil
74 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
75 schema:name Engineering
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
78 schema:name Biomedical Engineering
79 rdf:type schema:DefinedTerm
80 sg:journal.1294980 schema:issn 1609-0985
81 2199-4757
82 schema:name Journal of Medical and Biological Engineering
83 rdf:type schema:Periodical
84 sg:person.01021106734.61 schema:affiliation https://www.grid.ac/institutes/grid.5290.e
85 schema:familyName Miyashita
86 schema:givenName Tomoyuki
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021106734.61
88 rdf:type schema:Person
89 sg:person.013137231723.09 schema:affiliation https://www.grid.ac/institutes/grid.5290.e
90 schema:familyName Iwata
91 schema:givenName Hiroyasu
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013137231723.09
93 rdf:type schema:Person
94 sg:person.07530031275.44 schema:affiliation https://www.grid.ac/institutes/grid.5290.e
95 schema:familyName Tsumura
96 schema:givenName Ryosuke
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07530031275.44
98 rdf:type schema:Person
99 sg:pub.10.1007/s10439-013-0892-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033201498
100 https://doi.org/10.1007/s10439-013-0892-5
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10439-014-1203-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015372182
103 https://doi.org/10.1007/s10439-014-1203-5
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s11517-014-1173-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027154012
106 https://doi.org/10.1007/s11517-014-1173-7
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.bspc.2007.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034180005
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.compbiomed.2014.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014426467
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.medengphy.2006.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046453543
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.medengphy.2008.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029106177
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.medengphy.2009.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005514665
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.medengphy.2012.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032166418
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1080/10255842.2012.694876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011533764
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/biorob.2006.1639065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094603192
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/icra.2015.7139499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093559910
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/iros.2014.6943172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094769090
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/lra.2016.2527065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061375869
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/lra.2016.2528301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061375877
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/robot.2005.1570348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094528341
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/robot.2009.5152617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078363339
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/tbme.2004.831542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526215
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/tbme.2005.847548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526404
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/tbme.2012.2204749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061528844
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/tro.2012.2230991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785466
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1115/1.4030374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062155652
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1142/s0219519415500797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062997902
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1177/0278364906065388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017600727
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1177/0278364910369714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032629064
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1177/0278364914526627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044665825
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.5290.e schema:alternateName Waseda University
155 schema:name Faculty of Science and Engineering, Waseda University, 40-603, 27 Waseda-cho, Shinjuku-ku, 162-0042, Tokyo, Japan
156 Graduate School of Creative Science and Engineering, Waseda University, 40-603, 27 Waseda-cho, Shinjuku-ku, 162-0042, Tokyo, Japan
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...