Exceptionally shear-stable and ultra-strong Ir-Ni-Ta high-temperature metallic glasses at micro/nano scales View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-09-06

AUTHORS

Yu-Tian Wang, Quan-Feng He, Zi-Jian Wang, Ming-Xing Li, Yan-Hui Liu, Yong Yang, Bao-An Sun, Wei-Hua Wang

ABSTRACT

Ir-Ni-Ta metallic glasses (MGs) exhibit an array of superior high-temperature properties, making them attractive for applications at high temperatures or in harsh environments. However, Ir-Ni-Ta bulk MGs are quite brittle and often fracture catastrophically even before plastic yielding, significantly undercutting their high-strength advantage. Here, we show that the Ir-Ni-Ta MGs are not intrinsically brittle, but rather malleable when the feature size is reduced to micro/nano-scales. All tested Ir-Ni-Ta MG micropillars with a diameter ranging from ~500 nm to ~5 µm display a large plastic strain above 25% (the maximum up to 35%), together with a yield strength up to 7 GPa, well exceeding the strength recorded in most metallic materials. The intrinsic shear stability of Ir-Ni-Ta MGs, as characterized by the normalized shear displacement during a shear event, is much larger than those malleable Zr- and Cu-based MGs. Our results suggest that Ir-Ni-Ta MGs are excellent candidates for micro/nanoscale structural applications used at high-temperature or extreme conditions. More... »

PAGES

501-507

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40843-021-1760-8

DOI

http://dx.doi.org/10.1007/s40843-021-1760-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141003487


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yu-Tian", 
        "id": "sg:person.011046747423.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011046747423.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China", 
          "id": "http://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Quan-Feng", 
        "id": "sg:person.010765037720.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010765037720.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zi-Jian", 
        "id": "sg:person.012773530343.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012773530343.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Songshan Lake Materials Laboratory, 523808, Dongguan, China", 
          "id": "http://www.grid.ac/institutes/grid.511002.7", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "Songshan Lake Materials Laboratory, 523808, Dongguan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ming-Xing", 
        "id": "sg:person.013610013541.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013610013541.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Songshan Lake Materials Laboratory, 523808, Dongguan, China", 
          "id": "http://www.grid.ac/institutes/grid.511002.7", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "Songshan Lake Materials Laboratory, 523808, Dongguan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yan-Hui", 
        "id": "sg:person.013014771543.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013014771543.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China", 
          "id": "http://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Yong", 
        "id": "sg:person.011030777611.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030777611.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Songshan Lake Materials Laboratory, 523808, Dongguan, China", 
          "id": "http://www.grid.ac/institutes/grid.511002.7", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "Songshan Lake Materials Laboratory, 523808, Dongguan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Bao-An", 
        "id": "sg:person.016250700645.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016250700645.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Songshan Lake Materials Laboratory, 523808, Dongguan, China", 
          "id": "http://www.grid.ac/institutes/grid.511002.7", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "Songshan Lake Materials Laboratory, 523808, Dongguan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Wei-Hua", 
        "id": "sg:person.01363714371.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363714371.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41467-019-13087-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122386409", 
          "https://doi.org/10.1038/s41467-019-13087-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature21691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084537608", 
          "https://doi.org/10.1038/nature21691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030636840", 
          "https://doi.org/10.1038/nmat1984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022408182", 
          "https://doi.org/10.1038/nmat2622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011777417", 
          "https://doi.org/10.1038/ncomms1619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2011.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006638555", 
          "https://doi.org/10.1557/jmr.2011.187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2007.0104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017597128", 
          "https://doi.org/10.1557/jmr.2007.0104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-02100-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085370608", 
          "https://doi.org/10.1038/s41598-017-02100-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep05302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013604920", 
          "https://doi.org/10.1038/srep05302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-021-21577-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1135745886", 
          "https://doi.org/10.1038/s41467-021-21577-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014001816", 
          "https://doi.org/10.1038/nature14674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-019-1145-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113858723", 
          "https://doi.org/10.1038/s41586-019-1145-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-09-06", 
    "datePublishedReg": "2021-09-06", 
    "description": "Ir-Ni-Ta metallic glasses (MGs) exhibit an array of superior high-temperature properties, making them attractive for applications at high temperatures or in harsh environments. However, Ir-Ni-Ta bulk MGs are quite brittle and often fracture catastrophically even before plastic yielding, significantly undercutting their high-strength advantage. Here, we show that the Ir-Ni-Ta MGs are not intrinsically brittle, but rather malleable when the feature size is reduced to micro/nano-scales. All tested Ir-Ni-Ta MG micropillars with a diameter ranging from ~500 nm to ~5 \u00b5m display a large plastic strain above 25% (the maximum up to 35%), together with a yield strength up to 7 GPa, well exceeding the strength recorded in most metallic materials. The intrinsic shear stability of Ir-Ni-Ta MGs, as characterized by the normalized shear displacement during a shear event, is much larger than those malleable Zr- and Cu-based MGs. Our results suggest that Ir-Ni-Ta MGs are excellent candidates for micro/nanoscale structural applications used at high-temperature or extreme conditions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40843-021-1760-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8930612", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8133842", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9416361", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1135897", 
        "issn": [
          "2095-8226", 
          "2199-4501"
        ], 
        "name": "Science China Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "65"
      }
    ], 
    "keywords": [
      "Ta metallic glasses", 
      "metallic glasses", 
      "Ta bulk metallic glasses", 
      "superior high temperature properties", 
      "large plastic strains", 
      "micro/nano", 
      "high temperature properties", 
      "most metallic materials", 
      "bulk metallic glass", 
      "structural applications", 
      "yield strength", 
      "plastic strain", 
      "metallic materials", 
      "plastic yielding", 
      "MG micropillars", 
      "shear displacement", 
      "feature size", 
      "shear stability", 
      "harsh environments", 
      "shear events", 
      "high temperature", 
      "Ir-Ni", 
      "excellent candidate", 
      "extreme conditions", 
      "glass", 
      "strength", 
      "micropillars", 
      "yielding", 
      "nano", 
      "applications", 
      "displacement", 
      "Zr", 
      "GPa", 
      "temperature", 
      "materials", 
      "stability", 
      "diameter", 
      "array", 
      "properties", 
      "Cu", 
      "advantages", 
      "conditions", 
      "size", 
      "results", 
      "strains", 
      "environment", 
      "candidates", 
      "events"
    ], 
    "name": "Exceptionally shear-stable and ultra-strong Ir-Ni-Ta high-temperature metallic glasses at micro/nano scales", 
    "pagination": "501-507", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141003487"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40843-021-1760-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40843-021-1760-8", 
      "https://app.dimensions.ai/details/publication/pub.1141003487"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_908.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40843-021-1760-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40843-021-1760-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40843-021-1760-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40843-021-1760-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40843-021-1760-8'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      22 PREDICATES      85 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40843-021-1760-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N4198917af14b4d46a8eaa2343ebff326
4 schema:citation sg:pub.10.1038/nature14674
5 sg:pub.10.1038/nature21691
6 sg:pub.10.1038/ncomms1619
7 sg:pub.10.1038/nmat1984
8 sg:pub.10.1038/nmat2622
9 sg:pub.10.1038/s41467-019-13087-4
10 sg:pub.10.1038/s41467-021-21577-7
11 sg:pub.10.1038/s41586-019-1145-z
12 sg:pub.10.1038/s41598-017-02100-9
13 sg:pub.10.1038/srep05302
14 sg:pub.10.1557/jmr.2007.0104
15 sg:pub.10.1557/jmr.2011.187
16 schema:datePublished 2021-09-06
17 schema:datePublishedReg 2021-09-06
18 schema:description Ir-Ni-Ta metallic glasses (MGs) exhibit an array of superior high-temperature properties, making them attractive for applications at high temperatures or in harsh environments. However, Ir-Ni-Ta bulk MGs are quite brittle and often fracture catastrophically even before plastic yielding, significantly undercutting their high-strength advantage. Here, we show that the Ir-Ni-Ta MGs are not intrinsically brittle, but rather malleable when the feature size is reduced to micro/nano-scales. All tested Ir-Ni-Ta MG micropillars with a diameter ranging from ~500 nm to ~5 µm display a large plastic strain above 25% (the maximum up to 35%), together with a yield strength up to 7 GPa, well exceeding the strength recorded in most metallic materials. The intrinsic shear stability of Ir-Ni-Ta MGs, as characterized by the normalized shear displacement during a shear event, is much larger than those malleable Zr- and Cu-based MGs. Our results suggest that Ir-Ni-Ta MGs are excellent candidates for micro/nanoscale structural applications used at high-temperature or extreme conditions.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N30c68778e6be496daed21d7106804106
23 Nc34ba31e9cab428497773db8b0d2421e
24 sg:journal.1135897
25 schema:keywords Cu
26 GPa
27 Ir-Ni
28 MG micropillars
29 Ta bulk metallic glasses
30 Ta metallic glasses
31 Zr
32 advantages
33 applications
34 array
35 bulk metallic glass
36 candidates
37 conditions
38 diameter
39 displacement
40 environment
41 events
42 excellent candidate
43 extreme conditions
44 feature size
45 glass
46 harsh environments
47 high temperature
48 high temperature properties
49 large plastic strains
50 materials
51 metallic glasses
52 metallic materials
53 micro/nano
54 micropillars
55 most metallic materials
56 nano
57 plastic strain
58 plastic yielding
59 properties
60 results
61 shear displacement
62 shear events
63 shear stability
64 size
65 stability
66 strains
67 strength
68 structural applications
69 superior high temperature properties
70 temperature
71 yield strength
72 yielding
73 schema:name Exceptionally shear-stable and ultra-strong Ir-Ni-Ta high-temperature metallic glasses at micro/nano scales
74 schema:pagination 501-507
75 schema:productId N53fdf319e05b47b283869b0b7d77acb2
76 N848a34047b6744ca972321f04f7e79a7
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141003487
78 https://doi.org/10.1007/s40843-021-1760-8
79 schema:sdDatePublished 2022-05-10T10:29
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N0d1d45fc240a4b6dbddbba39ef6f0a8f
82 schema:url https://doi.org/10.1007/s40843-021-1760-8
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N0d1d45fc240a4b6dbddbba39ef6f0a8f schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N30126ef2a742475eadc97c5cf14e5eb0 rdf:first sg:person.010765037720.78
89 rdf:rest Nd7c7bf82b3cc4a52bde964a24cd4021d
90 N30c68778e6be496daed21d7106804106 schema:issueNumber 2
91 rdf:type schema:PublicationIssue
92 N335705f8e2ae4b72911589d56f7fdbd1 rdf:first sg:person.016250700645.65
93 rdf:rest N7e23a8848ad6419d9427f6224c94b899
94 N4198917af14b4d46a8eaa2343ebff326 rdf:first sg:person.011046747423.38
95 rdf:rest N30126ef2a742475eadc97c5cf14e5eb0
96 N53fdf319e05b47b283869b0b7d77acb2 schema:name doi
97 schema:value 10.1007/s40843-021-1760-8
98 rdf:type schema:PropertyValue
99 N642004edf6414770b0cab58a9a1fc4eb rdf:first sg:person.013014771543.17
100 rdf:rest Na7a9fe7552fd47f6ae7f2d951ae76baa
101 N7e23a8848ad6419d9427f6224c94b899 rdf:first sg:person.01363714371.28
102 rdf:rest rdf:nil
103 N848a34047b6744ca972321f04f7e79a7 schema:name dimensions_id
104 schema:value pub.1141003487
105 rdf:type schema:PropertyValue
106 Na7a9fe7552fd47f6ae7f2d951ae76baa rdf:first sg:person.011030777611.68
107 rdf:rest N335705f8e2ae4b72911589d56f7fdbd1
108 Nb6c853c0ce20487eac0a98319c82b29d rdf:first sg:person.013610013541.42
109 rdf:rest N642004edf6414770b0cab58a9a1fc4eb
110 Nc34ba31e9cab428497773db8b0d2421e schema:volumeNumber 65
111 rdf:type schema:PublicationVolume
112 Nd7c7bf82b3cc4a52bde964a24cd4021d rdf:first sg:person.012773530343.25
113 rdf:rest Nb6c853c0ce20487eac0a98319c82b29d
114 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
115 schema:name Engineering
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
118 schema:name Materials Engineering
119 rdf:type schema:DefinedTerm
120 sg:grant.8133842 http://pending.schema.org/fundedItem sg:pub.10.1007/s40843-021-1760-8
121 rdf:type schema:MonetaryGrant
122 sg:grant.8930612 http://pending.schema.org/fundedItem sg:pub.10.1007/s40843-021-1760-8
123 rdf:type schema:MonetaryGrant
124 sg:grant.9416361 http://pending.schema.org/fundedItem sg:pub.10.1007/s40843-021-1760-8
125 rdf:type schema:MonetaryGrant
126 sg:journal.1135897 schema:issn 2095-8226
127 2199-4501
128 schema:name Science China Materials
129 schema:publisher Springer Nature
130 rdf:type schema:Periodical
131 sg:person.010765037720.78 schema:affiliation grid-institutes:grid.35030.35
132 schema:familyName He
133 schema:givenName Quan-Feng
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010765037720.78
135 rdf:type schema:Person
136 sg:person.011030777611.68 schema:affiliation grid-institutes:grid.35030.35
137 schema:familyName Yang
138 schema:givenName Yong
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030777611.68
140 rdf:type schema:Person
141 sg:person.011046747423.38 schema:affiliation grid-institutes:grid.458438.6
142 schema:familyName Wang
143 schema:givenName Yu-Tian
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011046747423.38
145 rdf:type schema:Person
146 sg:person.012773530343.25 schema:affiliation grid-institutes:grid.458438.6
147 schema:familyName Wang
148 schema:givenName Zi-Jian
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012773530343.25
150 rdf:type schema:Person
151 sg:person.013014771543.17 schema:affiliation grid-institutes:grid.511002.7
152 schema:familyName Liu
153 schema:givenName Yan-Hui
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013014771543.17
155 rdf:type schema:Person
156 sg:person.013610013541.42 schema:affiliation grid-institutes:grid.511002.7
157 schema:familyName Li
158 schema:givenName Ming-Xing
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013610013541.42
160 rdf:type schema:Person
161 sg:person.01363714371.28 schema:affiliation grid-institutes:grid.511002.7
162 schema:familyName Wang
163 schema:givenName Wei-Hua
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363714371.28
165 rdf:type schema:Person
166 sg:person.016250700645.65 schema:affiliation grid-institutes:grid.511002.7
167 schema:familyName Sun
168 schema:givenName Bao-An
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016250700645.65
170 rdf:type schema:Person
171 sg:pub.10.1038/nature14674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014001816
172 https://doi.org/10.1038/nature14674
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nature21691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084537608
175 https://doi.org/10.1038/nature21691
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/ncomms1619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011777417
178 https://doi.org/10.1038/ncomms1619
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nmat1984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030636840
181 https://doi.org/10.1038/nmat1984
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nmat2622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022408182
184 https://doi.org/10.1038/nmat2622
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/s41467-019-13087-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122386409
187 https://doi.org/10.1038/s41467-019-13087-4
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/s41467-021-21577-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135745886
190 https://doi.org/10.1038/s41467-021-21577-7
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/s41586-019-1145-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1113858723
193 https://doi.org/10.1038/s41586-019-1145-z
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/s41598-017-02100-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085370608
196 https://doi.org/10.1038/s41598-017-02100-9
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/srep05302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013604920
199 https://doi.org/10.1038/srep05302
200 rdf:type schema:CreativeWork
201 sg:pub.10.1557/jmr.2007.0104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017597128
202 https://doi.org/10.1557/jmr.2007.0104
203 rdf:type schema:CreativeWork
204 sg:pub.10.1557/jmr.2011.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006638555
205 https://doi.org/10.1557/jmr.2011.187
206 rdf:type schema:CreativeWork
207 grid-institutes:grid.35030.35 schema:alternateName Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
208 schema:name Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
209 rdf:type schema:Organization
210 grid-institutes:grid.458438.6 schema:alternateName Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
211 schema:name Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
212 rdf:type schema:Organization
213 grid-institutes:grid.511002.7 schema:alternateName Songshan Lake Materials Laboratory, 523808, Dongguan, China
214 schema:name Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
215 Songshan Lake Materials Laboratory, 523808, Dongguan, China
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...