Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-01-31

AUTHORS

Ning Zhang, Ran Long, Chao Gao, Yujie Xiong

ABSTRACT

The energy crisis and global warming become severe issues. Solar-driven CO2 reduction provides a promising route to confront the predicaments, which has received much attention. The photoelectrochemical (PEC) process, which can integrate the merits of both photocatalysis and electrocatalysis, boosts splendid talent for CO2 reduction with high efficiency and excellent selectivity. Recent several decades have witnessed the overwhelming development of PEC CO2 reduction. In this review, we attempt to systematically summarize the recent advanced design for PEC CO2 reduction. On account of basic principles and evaluation parameters, we firstly highlight the subtle construction for photocathodes to enhance the efficiency and selectivity of CO2 reduction, which includes the strategies for improving light utilization, supplying catalytic active sites and steering reaction pathway. Furthermore, diversiform novel PEC setups are also outlined. These exploited setups endow a bright window to surmount the intrinsic disadvantages of photocathode, showing promising potentials for future applications. Finally, we underline the challenges and key factors for the further development of PEC CO2 reduction that would enable more efficient designs for setups and deepen systematic understanding for mechanisms. More... »

PAGES

771-805

References to SciGraph publications

  • 2011-06-19. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation in NATURE MATERIALS
  • 2016-06-23. Enhancing photoelectrochemical activity with three-dimensional p-CuO/n-ZnO junction photocathodes in SCIENCE CHINA MATERIALS
  • 1979-02. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders in NATURE
  • 2015-01-06. Plasmon-induced hot carrier science and technology in NATURE NANOTECHNOLOGY
  • 1984-05. Photoelectrochemical pumping of enzymatic CO2 reduction in NATURE
  • 2016-11-29. Hydrogenated TiO2/SrTiO3 porous microspheres with tunable band structure for solar-light photocatalytic H2 and O2 evolution in SCIENCE CHINA MATERIALS
  • 2013-05-05. H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover in NATURE MATERIALS
  • 2016-09-02. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction in NATURE COMMUNICATIONS
  • 2013-01-11. Ionic Liquid Co-catalyzed Artificial Photosynthesis of CO in SCIENTIFIC REPORTS
  • 2011-05-08. Highly active oxide photocathode for photoelectrochemical water reduction in NATURE MATERIALS
  • 2014-07-30. Robust carbon dioxide reduction on molybdenum disulphide edges in NATURE COMMUNICATIONS
  • 2014-01-30. A selective and efficient electrocatalyst for carbon dioxide reduction in NATURE COMMUNICATIONS
  • 2012-07-31. Artificial photosynthesis for solar water-splitting in NATURE PHOTONICS
  • 2015-06-11. Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics in NATURE COMMUNICATIONS
  • 2010-06-23. Visible light photocatalysis as a greener approach to photochemical synthesis in NATURE CHEMISTRY
  • 2017-01-11. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting in NATURE REVIEWS CHEMISTRY
  • 2013-12-02. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction in NATURE COMMUNICATIONS
  • 2014-12-23. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel in SCIENCE CHINA MATERIALS
  • 2001-11. Photoelectrochemical cells in NATURE
  • 2017-01-22. Promoting charge carrier utilization by integrating layered double hydroxide nanosheet arrays with porous BiVO4 photoanode for efficient photoelectrochemical water splitting in SCIENCE CHINA MATERIALS
  • 2017-07-17. Visible-light-driven methane formation from CO2 with a molecular iron catalyst in NATURE
  • 2014-12-01. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst in NATURE NANOTECHNOLOGY
  • 1978-09. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells in NATURE
  • 2017-06-05. Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO in NATURE ENERGY
  • 2016-01-06. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40843-017-9151-y

    DOI

    http://dx.doi.org/10.1007/s40843-017-9151-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100775024


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.511309.f", 
              "name": [
                "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Ning", 
            "id": "sg:person.011707713025.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011707713025.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.511309.f", 
              "name": [
                "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Long", 
            "givenName": "Ran", 
            "id": "sg:person.0640412546.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640412546.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.511309.f", 
              "name": [
                "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gao", 
            "givenName": "Chao", 
            "id": "sg:person.01277070523.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277070523.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.511309.f", 
              "name": [
                "Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiong", 
            "givenName": "Yujie", 
            "id": "sg:person.0600113217.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113217.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s40843-016-5168-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074192985", 
              "https://doi.org/10.1007/s40843-016-5168-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nenergy.2017.87", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085863414", 
              "https://doi.org/10.1038/nenergy.2017.87"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023929979", 
              "https://doi.org/10.1038/nmat3626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep01056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047103338", 
              "https://doi.org/10.1038/srep01056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35104607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025421157", 
              "https://doi.org/10.1038/35104607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2012.175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030431408", 
              "https://doi.org/10.1038/nphoton.2012.175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013700429", 
              "https://doi.org/10.1038/ncomms3819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004156690", 
              "https://doi.org/10.1038/nmat3017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043415813", 
              "https://doi.org/10.1038/nmat3047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms12697", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011109577", 
              "https://doi.org/10.1038/ncomms12697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090717690", 
              "https://doi.org/10.1038/nature23016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/277637a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017569831", 
              "https://doi.org/10.1038/277637a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/275115a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024911472", 
              "https://doi.org/10.1038/275115a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032454166", 
              "https://doi.org/10.1038/nnano.2014.277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017930377", 
              "https://doi.org/10.1038/ncomms8326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/309148a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053271883", 
              "https://doi.org/10.1038/309148a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40843-014-0003-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031257696", 
              "https://doi.org/10.1007/s40843-014-0003-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41570-016-0003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027381619", 
              "https://doi.org/10.1038/s41570-016-0003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40843-016-5054-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032706458", 
              "https://doi.org/10.1007/s40843-016-5054-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020554862", 
              "https://doi.org/10.1038/nchem.687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms4242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036234898", 
              "https://doi.org/10.1038/ncomms4242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40843-016-5126-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039984874", 
              "https://doi.org/10.1007/s40843-016-5126-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003650249", 
              "https://doi.org/10.1038/nature16455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040403690", 
              "https://doi.org/10.1038/nnano.2014.311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003650195", 
              "https://doi.org/10.1038/ncomms5470"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-01-31", 
        "datePublishedReg": "2018-01-31", 
        "description": "The energy crisis and global warming become severe issues. Solar-driven CO2 reduction provides a promising route to confront the predicaments, which has received much attention. The photoelectrochemical (PEC) process, which can integrate the merits of both photocatalysis and electrocatalysis, boosts splendid talent for CO2 reduction with high efficiency and excellent selectivity. Recent several decades have witnessed the overwhelming development of PEC CO2 reduction. In this review, we attempt to systematically summarize the recent advanced design for PEC CO2 reduction. On account of basic principles and evaluation parameters, we firstly highlight the subtle construction for photocathodes to enhance the efficiency and selectivity of CO2 reduction, which includes the strategies for improving light utilization, supplying catalytic active sites and steering reaction pathway. Furthermore, diversiform novel PEC setups are also outlined. These exploited setups endow a bright window to surmount the intrinsic disadvantages of photocathode, showing promising potentials for future applications. Finally, we underline the challenges and key factors for the further development of PEC CO2 reduction that would enable more efficient designs for setups and deepen systematic understanding for mechanisms.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s40843-017-9151-y", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8148737", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8380680", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1135897", 
            "issn": [
              "2095-8226", 
              "2199-4501"
            ], 
            "name": "Science China Materials", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "61"
          }
        ], 
        "keywords": [
          "PEC CO2 reduction", 
          "CO2 reduction", 
          "solar-driven CO2 reduction", 
          "recent advanced designs", 
          "advanced design", 
          "catalytic active sites", 
          "PEC setup", 
          "photoelectrochemical reduction", 
          "bright window", 
          "light utilization", 
          "overwhelming development", 
          "promising route", 
          "photoelectrochemical process", 
          "excellent selectivity", 
          "intrinsic disadvantages", 
          "future applications", 
          "energy crisis", 
          "recent progress", 
          "high efficiency", 
          "photocathode", 
          "efficient design", 
          "severe issue", 
          "active site", 
          "electrocatalysis", 
          "photocatalysis", 
          "setup", 
          "selectivity", 
          "subtle construction", 
          "efficiency", 
          "design", 
          "evaluation parameters", 
          "fuel", 
          "global warming", 
          "further development", 
          "route", 
          "applications", 
          "merits", 
          "key factors", 
          "reduction", 
          "basic principles", 
          "CO2", 
          "systematic understanding", 
          "utilization", 
          "reaction pathways", 
          "parameters", 
          "window", 
          "challenges", 
          "potential", 
          "progress", 
          "process", 
          "construction", 
          "disadvantages", 
          "development", 
          "strategies", 
          "account", 
          "principles", 
          "attention", 
          "warming", 
          "issues", 
          "decades", 
          "mechanism", 
          "review", 
          "sites", 
          "factors", 
          "understanding", 
          "pathway", 
          "predicament", 
          "crisis", 
          "talent"
        ], 
        "name": "Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels", 
        "pagination": "771-805", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100775024"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40843-017-9151-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40843-017-9151-y", 
          "https://app.dimensions.ai/details/publication/pub.1100775024"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_762.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s40843-017-9151-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40843-017-9151-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40843-017-9151-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40843-017-9151-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40843-017-9151-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    251 TRIPLES      21 PREDICATES      118 URIs      85 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40843-017-9151-y schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N9a0acb0797544627af6ebe91a21c4e17
    4 schema:citation sg:pub.10.1007/s40843-014-0003-1
    5 sg:pub.10.1007/s40843-016-5054-6
    6 sg:pub.10.1007/s40843-016-5126-1
    7 sg:pub.10.1007/s40843-016-5168-0
    8 sg:pub.10.1038/275115a0
    9 sg:pub.10.1038/277637a0
    10 sg:pub.10.1038/309148a0
    11 sg:pub.10.1038/35104607
    12 sg:pub.10.1038/nature16455
    13 sg:pub.10.1038/nature23016
    14 sg:pub.10.1038/nchem.687
    15 sg:pub.10.1038/ncomms12697
    16 sg:pub.10.1038/ncomms3819
    17 sg:pub.10.1038/ncomms4242
    18 sg:pub.10.1038/ncomms5470
    19 sg:pub.10.1038/ncomms8326
    20 sg:pub.10.1038/nenergy.2017.87
    21 sg:pub.10.1038/nmat3017
    22 sg:pub.10.1038/nmat3047
    23 sg:pub.10.1038/nmat3626
    24 sg:pub.10.1038/nnano.2014.277
    25 sg:pub.10.1038/nnano.2014.311
    26 sg:pub.10.1038/nphoton.2012.175
    27 sg:pub.10.1038/s41570-016-0003
    28 sg:pub.10.1038/srep01056
    29 schema:datePublished 2018-01-31
    30 schema:datePublishedReg 2018-01-31
    31 schema:description The energy crisis and global warming become severe issues. Solar-driven CO2 reduction provides a promising route to confront the predicaments, which has received much attention. The photoelectrochemical (PEC) process, which can integrate the merits of both photocatalysis and electrocatalysis, boosts splendid talent for CO2 reduction with high efficiency and excellent selectivity. Recent several decades have witnessed the overwhelming development of PEC CO2 reduction. In this review, we attempt to systematically summarize the recent advanced design for PEC CO2 reduction. On account of basic principles and evaluation parameters, we firstly highlight the subtle construction for photocathodes to enhance the efficiency and selectivity of CO2 reduction, which includes the strategies for improving light utilization, supplying catalytic active sites and steering reaction pathway. Furthermore, diversiform novel PEC setups are also outlined. These exploited setups endow a bright window to surmount the intrinsic disadvantages of photocathode, showing promising potentials for future applications. Finally, we underline the challenges and key factors for the further development of PEC CO2 reduction that would enable more efficient designs for setups and deepen systematic understanding for mechanisms.
    32 schema:genre article
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N3968ea8bdb874ae1b3933cba541d65d4
    35 N55b77c5347ab46b1b8d0c15f03e1ae04
    36 sg:journal.1135897
    37 schema:keywords CO2
    38 CO2 reduction
    39 PEC CO2 reduction
    40 PEC setup
    41 account
    42 active site
    43 advanced design
    44 applications
    45 attention
    46 basic principles
    47 bright window
    48 catalytic active sites
    49 challenges
    50 construction
    51 crisis
    52 decades
    53 design
    54 development
    55 disadvantages
    56 efficiency
    57 efficient design
    58 electrocatalysis
    59 energy crisis
    60 evaluation parameters
    61 excellent selectivity
    62 factors
    63 fuel
    64 further development
    65 future applications
    66 global warming
    67 high efficiency
    68 intrinsic disadvantages
    69 issues
    70 key factors
    71 light utilization
    72 mechanism
    73 merits
    74 overwhelming development
    75 parameters
    76 pathway
    77 photocatalysis
    78 photocathode
    79 photoelectrochemical process
    80 photoelectrochemical reduction
    81 potential
    82 predicament
    83 principles
    84 process
    85 progress
    86 promising route
    87 reaction pathways
    88 recent advanced designs
    89 recent progress
    90 reduction
    91 review
    92 route
    93 selectivity
    94 setup
    95 severe issue
    96 sites
    97 solar-driven CO2 reduction
    98 strategies
    99 subtle construction
    100 systematic understanding
    101 talent
    102 understanding
    103 utilization
    104 warming
    105 window
    106 schema:name Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels
    107 schema:pagination 771-805
    108 schema:productId N4ef9b760b08e47659ae2473ef4d00e77
    109 Nd44ae0b3961e4200a88c35570cec37a3
    110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100775024
    111 https://doi.org/10.1007/s40843-017-9151-y
    112 schema:sdDatePublished 2022-12-01T06:38
    113 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    114 schema:sdPublisher N9f80162d0a9d40418eaffb0eeaf09976
    115 schema:url https://doi.org/10.1007/s40843-017-9151-y
    116 sgo:license sg:explorer/license/
    117 sgo:sdDataset articles
    118 rdf:type schema:ScholarlyArticle
    119 N187461570ead4f58b92df1b68e145bf3 rdf:first sg:person.0600113217.27
    120 rdf:rest rdf:nil
    121 N3968ea8bdb874ae1b3933cba541d65d4 schema:issueNumber 6
    122 rdf:type schema:PublicationIssue
    123 N4ef9b760b08e47659ae2473ef4d00e77 schema:name dimensions_id
    124 schema:value pub.1100775024
    125 rdf:type schema:PropertyValue
    126 N55b77c5347ab46b1b8d0c15f03e1ae04 schema:volumeNumber 61
    127 rdf:type schema:PublicationVolume
    128 N6f6ed2783ad44b2ebdbbffcf5b36d3a3 rdf:first sg:person.0640412546.43
    129 rdf:rest N7bdabb6b32d94f36a97a55905bfd504b
    130 N7bdabb6b32d94f36a97a55905bfd504b rdf:first sg:person.01277070523.33
    131 rdf:rest N187461570ead4f58b92df1b68e145bf3
    132 N9a0acb0797544627af6ebe91a21c4e17 rdf:first sg:person.011707713025.38
    133 rdf:rest N6f6ed2783ad44b2ebdbbffcf5b36d3a3
    134 N9f80162d0a9d40418eaffb0eeaf09976 schema:name Springer Nature - SN SciGraph project
    135 rdf:type schema:Organization
    136 Nd44ae0b3961e4200a88c35570cec37a3 schema:name doi
    137 schema:value 10.1007/s40843-017-9151-y
    138 rdf:type schema:PropertyValue
    139 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Chemical Sciences
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Physical Chemistry (incl. Structural)
    144 rdf:type schema:DefinedTerm
    145 sg:grant.8148737 http://pending.schema.org/fundedItem sg:pub.10.1007/s40843-017-9151-y
    146 rdf:type schema:MonetaryGrant
    147 sg:grant.8380680 http://pending.schema.org/fundedItem sg:pub.10.1007/s40843-017-9151-y
    148 rdf:type schema:MonetaryGrant
    149 sg:journal.1135897 schema:issn 2095-8226
    150 2199-4501
    151 schema:name Science China Materials
    152 schema:publisher Springer Nature
    153 rdf:type schema:Periodical
    154 sg:person.011707713025.38 schema:affiliation grid-institutes:grid.511309.f
    155 schema:familyName Zhang
    156 schema:givenName Ning
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011707713025.38
    158 rdf:type schema:Person
    159 sg:person.01277070523.33 schema:affiliation grid-institutes:grid.511309.f
    160 schema:familyName Gao
    161 schema:givenName Chao
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277070523.33
    163 rdf:type schema:Person
    164 sg:person.0600113217.27 schema:affiliation grid-institutes:grid.511309.f
    165 schema:familyName Xiong
    166 schema:givenName Yujie
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113217.27
    168 rdf:type schema:Person
    169 sg:person.0640412546.43 schema:affiliation grid-institutes:grid.511309.f
    170 schema:familyName Long
    171 schema:givenName Ran
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640412546.43
    173 rdf:type schema:Person
    174 sg:pub.10.1007/s40843-014-0003-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031257696
    175 https://doi.org/10.1007/s40843-014-0003-1
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s40843-016-5054-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032706458
    178 https://doi.org/10.1007/s40843-016-5054-6
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s40843-016-5126-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039984874
    181 https://doi.org/10.1007/s40843-016-5126-1
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s40843-016-5168-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074192985
    184 https://doi.org/10.1007/s40843-016-5168-0
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/275115a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024911472
    187 https://doi.org/10.1038/275115a0
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/277637a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017569831
    190 https://doi.org/10.1038/277637a0
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/309148a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053271883
    193 https://doi.org/10.1038/309148a0
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/35104607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025421157
    196 https://doi.org/10.1038/35104607
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nature16455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003650249
    199 https://doi.org/10.1038/nature16455
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nature23016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090717690
    202 https://doi.org/10.1038/nature23016
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nchem.687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020554862
    205 https://doi.org/10.1038/nchem.687
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/ncomms12697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011109577
    208 https://doi.org/10.1038/ncomms12697
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/ncomms3819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013700429
    211 https://doi.org/10.1038/ncomms3819
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/ncomms4242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036234898
    214 https://doi.org/10.1038/ncomms4242
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/ncomms5470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003650195
    217 https://doi.org/10.1038/ncomms5470
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/ncomms8326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017930377
    220 https://doi.org/10.1038/ncomms8326
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nenergy.2017.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085863414
    223 https://doi.org/10.1038/nenergy.2017.87
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nmat3017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004156690
    226 https://doi.org/10.1038/nmat3017
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nmat3047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043415813
    229 https://doi.org/10.1038/nmat3047
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/nmat3626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023929979
    232 https://doi.org/10.1038/nmat3626
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nnano.2014.277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032454166
    235 https://doi.org/10.1038/nnano.2014.277
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/nnano.2014.311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040403690
    238 https://doi.org/10.1038/nnano.2014.311
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/nphoton.2012.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030431408
    241 https://doi.org/10.1038/nphoton.2012.175
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/s41570-016-0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027381619
    244 https://doi.org/10.1038/s41570-016-0003
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/srep01056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047103338
    247 https://doi.org/10.1038/srep01056
    248 rdf:type schema:CreativeWork
    249 grid-institutes:grid.511309.f schema:alternateName Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
    250 schema:name Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
    251 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...