Diophantine Triples and k-Generalized Fibonacci Sequences View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-08-04

AUTHORS

Clemens Fuchs, Christoph Hutle, Florian Luca, László Szalay

ABSTRACT

We show that if k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} is an integer and (Fn(k))n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big (F_n^{(k)}\big )_{n\ge 0}$$\end{document} is the sequence of k-generalized Fibonacci numbers, then there are only finitely many triples of positive integers 1\usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 More... »

PAGES

1449-1465

References to SciGraph publications

  • 1999. Algebraic Number Theory in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40840-016-0405-4

    DOI

    http://dx.doi.org/10.1007/s40840-016-0405-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028769771


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Salzburg, Hellbrunner Str. 34/I, 5020, Salzburg, Austria", 
              "id": "http://www.grid.ac/institutes/grid.7039.d", 
              "name": [
                "University of Salzburg, Hellbrunner Str. 34/I, 5020, Salzburg, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fuchs", 
            "givenName": "Clemens", 
            "id": "sg:person.011534256073.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Salzburg, Hellbrunner Str. 34/I, 5020, Salzburg, Austria", 
              "id": "http://www.grid.ac/institutes/grid.7039.d", 
              "name": [
                "University of Salzburg, Hellbrunner Str. 34/I, 5020, Salzburg, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hutle", 
            "givenName": "Christoph", 
            "id": "sg:person.013637010235.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013637010235.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centro de Ciencias Matem\u00e1ticas UNAM, Morelia, Mexico", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "University of Witwatersrand, Johannesburg, South Africa", 
                "Centro de Ciencias Matem\u00e1ticas UNAM, Morelia, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Luca", 
            "givenName": "Florian", 
            "id": "sg:person.010400116116.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010400116116.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of West Hungary, Sopron, Hungary", 
              "id": "http://www.grid.ac/institutes/grid.410548.c", 
              "name": [
                "J. Selye University, Hradna ul. 21, 94501, Komarno, Slovakia", 
                "University of West Hungary, Sopron, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Szalay", 
            "givenName": "L\u00e1szl\u00f3", 
            "id": "sg:person.010254745511.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010254745511.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-662-03983-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014253491", 
              "https://doi.org/10.1007/978-3-662-03983-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-08-04", 
        "datePublishedReg": "2016-08-04", 
        "description": "We show that if k\u22652\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$k\\ge 2$$\\end{document} is an integer and (Fn(k))n\u22650\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\big (F_n^{(k)}\\big )_{n\\ge 0}$$\\end{document} is the sequence of k-generalized Fibonacci numbers, then there are only finitely many triples of positive integers 1
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40840-016-0405-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40840-016-0405-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40840-016-0405-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40840-016-0405-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    108 TRIPLES      22 PREDICATES      41 URIs      32 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40840-016-0405-4 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N057ec64ac1d249148ec9cec50b5cc6b4
    4 schema:citation sg:pub.10.1007/978-3-662-03983-0
    5 schema:datePublished 2016-08-04
    6 schema:datePublishedReg 2016-08-04
    7 schema:description We show that if k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} is an integer and (Fn(k))n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big (F_n^{(k)}\big )_{n\ge 0}$$\end{document} is the sequence of k-generalized Fibonacci numbers, then there are only finitely many triples of positive integers 1<a<b<c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<a<b<c$$\end{document} such that ab+1,ac+1,bc+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ab+1,~ac+1,~bc+1$$\end{document} are all members of {Fn(k):n≥1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big \{F_n^{(k)}: n\ge 1\big \}$$\end{document}. This generalizes a previous result where the statement for k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document} was proved. The result is ineffective since it is based on Schmidt’s subspace theorem.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N6be47c1c19464f3caeb2a2c33ad8351a
    12 N76ace530b857400abf789c9742207ddf
    13 sg:journal.1136582
    14 schema:keywords Diophantine triples
    15 Fibonacci numbers
    16 Fibonacci sequence
    17 Schmidt’s subspace theorem
    18 integers 1
    19 members
    20 number
    21 positive integers 1
    22 previous results
    23 results
    24 sequence
    25 statements
    26 subspace theorem
    27 theorem
    28 triples
    29 schema:name Diophantine Triples and k-Generalized Fibonacci Sequences
    30 schema:pagination 1449-1465
    31 schema:productId N21f7e3422fbc4dbd96fa3e40d5781fda
    32 N612a9ba9dc004eb9a68a7da5ac936463
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028769771
    34 https://doi.org/10.1007/s40840-016-0405-4
    35 schema:sdDatePublished 2022-01-01T18:42
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher Ndc560133f3fd4106a98ffdabb32d9a2a
    38 schema:url https://doi.org/10.1007/s40840-016-0405-4
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset articles
    41 rdf:type schema:ScholarlyArticle
    42 N057ec64ac1d249148ec9cec50b5cc6b4 rdf:first sg:person.011534256073.49
    43 rdf:rest N17f3c4fe9329460ca7691ba0637aa9b6
    44 N17f3c4fe9329460ca7691ba0637aa9b6 rdf:first sg:person.013637010235.17
    45 rdf:rest N73eabcea33c24b9497ef595f2b184106
    46 N21f7e3422fbc4dbd96fa3e40d5781fda schema:name doi
    47 schema:value 10.1007/s40840-016-0405-4
    48 rdf:type schema:PropertyValue
    49 N474aca250bf14f44ae064c95e9a75c73 rdf:first sg:person.010254745511.17
    50 rdf:rest rdf:nil
    51 N612a9ba9dc004eb9a68a7da5ac936463 schema:name dimensions_id
    52 schema:value pub.1028769771
    53 rdf:type schema:PropertyValue
    54 N6be47c1c19464f3caeb2a2c33ad8351a schema:issueNumber 3
    55 rdf:type schema:PublicationIssue
    56 N73eabcea33c24b9497ef595f2b184106 rdf:first sg:person.010400116116.14
    57 rdf:rest N474aca250bf14f44ae064c95e9a75c73
    58 N76ace530b857400abf789c9742207ddf schema:volumeNumber 41
    59 rdf:type schema:PublicationVolume
    60 Ndc560133f3fd4106a98ffdabb32d9a2a schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Pure Mathematics
    67 rdf:type schema:DefinedTerm
    68 sg:grant.6206592 http://pending.schema.org/fundedItem sg:pub.10.1007/s40840-016-0405-4
    69 rdf:type schema:MonetaryGrant
    70 sg:journal.1136582 schema:issn 0126-6705
    71 2180-4206
    72 schema:name Bulletin of the Malaysian Mathematical Sciences Society
    73 schema:publisher Springer Nature
    74 rdf:type schema:Periodical
    75 sg:person.010254745511.17 schema:affiliation grid-institutes:grid.410548.c
    76 schema:familyName Szalay
    77 schema:givenName László
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010254745511.17
    79 rdf:type schema:Person
    80 sg:person.010400116116.14 schema:affiliation grid-institutes:None
    81 schema:familyName Luca
    82 schema:givenName Florian
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010400116116.14
    84 rdf:type schema:Person
    85 sg:person.011534256073.49 schema:affiliation grid-institutes:grid.7039.d
    86 schema:familyName Fuchs
    87 schema:givenName Clemens
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49
    89 rdf:type schema:Person
    90 sg:person.013637010235.17 schema:affiliation grid-institutes:grid.7039.d
    91 schema:familyName Hutle
    92 schema:givenName Christoph
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013637010235.17
    94 rdf:type schema:Person
    95 sg:pub.10.1007/978-3-662-03983-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014253491
    96 https://doi.org/10.1007/978-3-662-03983-0
    97 rdf:type schema:CreativeWork
    98 grid-institutes:None schema:alternateName Centro de Ciencias Matemáticas UNAM, Morelia, Mexico
    99 schema:name Centro de Ciencias Matemáticas UNAM, Morelia, Mexico
    100 University of Witwatersrand, Johannesburg, South Africa
    101 rdf:type schema:Organization
    102 grid-institutes:grid.410548.c schema:alternateName University of West Hungary, Sopron, Hungary
    103 schema:name J. Selye University, Hradna ul. 21, 94501, Komarno, Slovakia
    104 University of West Hungary, Sopron, Hungary
    105 rdf:type schema:Organization
    106 grid-institutes:grid.7039.d schema:alternateName University of Salzburg, Hellbrunner Str. 34/I, 5020, Salzburg, Austria
    107 schema:name University of Salzburg, Hellbrunner Str. 34/I, 5020, Salzburg, Austria
    108 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...