A Review of Some Works in the Theory of Diskcyclic Operators View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-05-07

AUTHORS

Nareen Bamerni, Adem Kılıçman, Mohd Salmi Md Noorani

ABSTRACT

In this paper, we give a brief review concerning diskcyclic operators and then we provide some further characterizations of diskcyclic operators on separable Hilbert spaces. In particular, we show that if x∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in {\mathcal {H}}$$\end{document} has a disk orbit under T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document} that is somewhere dense in H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document}, then the disk orbit of x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} under T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document} need not be everywhere dense in H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document}. We also show that the inverse and the adjoint of a diskcyclic operator need not be diskcyclic. Moreover, we establish another diskcyclicity criterion and use it to find a necessary and sufficient condition for unilateral backward shifts that are diskcyclic operators. We show that a diskcyclic operator exists on a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} over the field of complex numbers if and only if dim(H)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim ({\mathcal {H}})=1$$\end{document} or dim(H)=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim ({\mathcal {H}})=\infty $$\end{document} . Finally, we give a sufficient condition for the somewhere density disk orbit to be everywhere dense. More... »

PAGES

723-739

References to SciGraph publications

  • 2011. Linear Chaos in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40840-015-0137-x

    DOI

    http://dx.doi.org/10.1007/s40840-015-0137-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004041333


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.11142.37", 
              "name": [
                "Department of Mathematics, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bamerni", 
            "givenName": "Nareen", 
            "id": "sg:person.015063466015.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015063466015.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.11142.37", 
              "name": [
                "Department of Mathematics, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "K\u0131l\u0131\u00e7man", 
            "givenName": "Adem", 
            "id": "sg:person.014231676063.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231676063.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematical Science, University Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.412113.4", 
              "name": [
                "School of Mathematical Science, University Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Noorani", 
            "givenName": "Mohd Salmi Md", 
            "id": "sg:person.015636473431.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015636473431.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4471-2170-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036432725", 
              "https://doi.org/10.1007/978-1-4471-2170-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-05-07", 
        "datePublishedReg": "2015-05-07", 
        "description": "In this paper, we give a brief review concerning diskcyclic operators and then we provide some further characterizations of diskcyclic operators on separable Hilbert spaces. In particular, we show that if x\u2208H\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$x\\in {\\mathcal {H}}$$\\end{document} has a disk orbit under T\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$T$$\\end{document} that is somewhere dense in H\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {H}}$$\\end{document}, then the disk orbit of x\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$x$$\\end{document} under T\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$T$$\\end{document} need not be everywhere dense in H\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {H}}$$\\end{document}. We also show that the inverse and the adjoint of a diskcyclic operator need not be diskcyclic. Moreover, we establish another diskcyclicity criterion and use it to find a necessary and sufficient condition for unilateral backward shifts that are diskcyclic operators. We show that a diskcyclic operator exists on a Hilbert space H\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {H}}$$\\end{document} over the field of complex numbers if and only if dim(H)=1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\dim ({\\mathcal {H}})=1$$\\end{document} or dim(H)=\u221e\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\dim ({\\mathcal {H}})=\\infty $$\\end{document} . Finally, we give a sufficient condition for the somewhere density disk orbit to be everywhere dense.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s40840-015-0137-x", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136582", 
            "issn": [
              "0126-6705", 
              "2180-4206"
            ], 
            "name": "Bulletin of the Malaysian Mathematical Sciences Society", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "39"
          }
        ], 
        "keywords": [
          "brief review", 
          "theory", 
          "backward shift", 
          "review", 
          "conditions", 
          "work", 
          "space", 
          "criteria", 
          "shift", 
          "operators", 
          "field", 
          "paper", 
          "number", 
          "separable Hilbert space", 
          "inverse", 
          "sufficient conditions", 
          "further characterization", 
          "characterization", 
          "disc orbits", 
          "orbit", 
          "adjoint", 
          "complex numbers", 
          "Hilbert space"
        ], 
        "name": "A Review of Some Works in the Theory of Diskcyclic Operators", 
        "pagination": "723-739", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004041333"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40840-015-0137-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40840-015-0137-x", 
          "https://app.dimensions.ai/details/publication/pub.1004041333"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_661.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s40840-015-0137-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40840-015-0137-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40840-015-0137-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40840-015-0137-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40840-015-0137-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    101 TRIPLES      21 PREDICATES      48 URIs      39 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40840-015-0137-x schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N6a2e679b16dd4258a7a61dca77499882
    4 schema:citation sg:pub.10.1007/978-1-4471-2170-1
    5 schema:datePublished 2015-05-07
    6 schema:datePublishedReg 2015-05-07
    7 schema:description In this paper, we give a brief review concerning diskcyclic operators and then we provide some further characterizations of diskcyclic operators on separable Hilbert spaces. In particular, we show that if x∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in {\mathcal {H}}$$\end{document} has a disk orbit under T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document} that is somewhere dense in H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document}, then the disk orbit of x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} under T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document} need not be everywhere dense in H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document}. We also show that the inverse and the adjoint of a diskcyclic operator need not be diskcyclic. Moreover, we establish another diskcyclicity criterion and use it to find a necessary and sufficient condition for unilateral backward shifts that are diskcyclic operators. We show that a diskcyclic operator exists on a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} over the field of complex numbers if and only if dim(H)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim ({\mathcal {H}})=1$$\end{document} or dim(H)=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim ({\mathcal {H}})=\infty $$\end{document} . Finally, we give a sufficient condition for the somewhere density disk orbit to be everywhere dense.
    8 schema:genre article
    9 schema:isAccessibleForFree true
    10 schema:isPartOf N7b36d6acb9f1441fb7ceb4b55a78c03f
    11 Nd98dcab62e5e47139b2c62ced2ca2b3b
    12 sg:journal.1136582
    13 schema:keywords Hilbert space
    14 adjoint
    15 backward shift
    16 brief review
    17 characterization
    18 complex numbers
    19 conditions
    20 criteria
    21 disc orbits
    22 field
    23 further characterization
    24 inverse
    25 number
    26 operators
    27 orbit
    28 paper
    29 review
    30 separable Hilbert space
    31 shift
    32 space
    33 sufficient conditions
    34 theory
    35 work
    36 schema:name A Review of Some Works in the Theory of Diskcyclic Operators
    37 schema:pagination 723-739
    38 schema:productId N3049a42ceb224e7b99cf6e2404be3a19
    39 N5a69dbb7c6f04ffbb9c2c6ca8caac5db
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004041333
    41 https://doi.org/10.1007/s40840-015-0137-x
    42 schema:sdDatePublished 2022-12-01T06:33
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher Nba566b31d15441e6b913494259c9c65a
    45 schema:url https://doi.org/10.1007/s40840-015-0137-x
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N09e859ebc217463494c5f557cc707f73 rdf:first sg:person.015636473431.22
    50 rdf:rest rdf:nil
    51 N3049a42ceb224e7b99cf6e2404be3a19 schema:name doi
    52 schema:value 10.1007/s40840-015-0137-x
    53 rdf:type schema:PropertyValue
    54 N5a69dbb7c6f04ffbb9c2c6ca8caac5db schema:name dimensions_id
    55 schema:value pub.1004041333
    56 rdf:type schema:PropertyValue
    57 N6a2e679b16dd4258a7a61dca77499882 rdf:first sg:person.015063466015.35
    58 rdf:rest Nd3f3383072db4e31b44a23b501f4d8a3
    59 N7b36d6acb9f1441fb7ceb4b55a78c03f schema:issueNumber 2
    60 rdf:type schema:PublicationIssue
    61 Nba566b31d15441e6b913494259c9c65a schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 Nd3f3383072db4e31b44a23b501f4d8a3 rdf:first sg:person.014231676063.05
    64 rdf:rest N09e859ebc217463494c5f557cc707f73
    65 Nd98dcab62e5e47139b2c62ced2ca2b3b schema:volumeNumber 39
    66 rdf:type schema:PublicationVolume
    67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Mathematical Sciences
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Pure Mathematics
    72 rdf:type schema:DefinedTerm
    73 sg:journal.1136582 schema:issn 0126-6705
    74 2180-4206
    75 schema:name Bulletin of the Malaysian Mathematical Sciences Society
    76 schema:publisher Springer Nature
    77 rdf:type schema:Periodical
    78 sg:person.014231676063.05 schema:affiliation grid-institutes:grid.11142.37
    79 schema:familyName Kılıçman
    80 schema:givenName Adem
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231676063.05
    82 rdf:type schema:Person
    83 sg:person.015063466015.35 schema:affiliation grid-institutes:grid.11142.37
    84 schema:familyName Bamerni
    85 schema:givenName Nareen
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015063466015.35
    87 rdf:type schema:Person
    88 sg:person.015636473431.22 schema:affiliation grid-institutes:grid.412113.4
    89 schema:familyName Noorani
    90 schema:givenName Mohd Salmi Md
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015636473431.22
    92 rdf:type schema:Person
    93 sg:pub.10.1007/978-1-4471-2170-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036432725
    94 https://doi.org/10.1007/978-1-4471-2170-1
    95 rdf:type schema:CreativeWork
    96 grid-institutes:grid.11142.37 schema:alternateName Department of Mathematics, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
    97 schema:name Department of Mathematics, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
    98 rdf:type schema:Organization
    99 grid-institutes:grid.412113.4 schema:alternateName School of Mathematical Science, University Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
    100 schema:name School of Mathematical Science, University Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
    101 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...