Comparative Study of Shape Memory Effects in Ni-Rich Ti–Ni Alloy After Training in Various Phase States View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-05-08

AUTHORS

E. Ryklina, K. Polyakova, S. Prokoshkin

ABSTRACT

Six various training modes were used for a systematic study of the effect of the initial phase state when training procedure on shape memory effect (SME) and two-way SME (TWSME) in nanostructured Ti–50.7 at% Ni alloy. Two types of the B2 austenite structure were chosen: (1) the mixed structure consisting of nanosubgrained and nanograined structures (cold drawing with a true strain of e = 0.6 followed by aging 430 °C, 10 h,) and (2) recrystallized structure (annealing at 700 °C, 20 min followed by the same aging) with the average grain size of 10 μm. The SME and TWSME training procedure was performed in bending under load. Nanostructured material manifests the maximum recovery strain 14–14.7% as a result of using training modes involving R → B19′ transformation under load. The maximum TWSME value of 3.2–3.5% was realized in the material with both structure types. More... »

PAGES

157-169

References to SciGraph publications

  • 2018-02. Study of the Evolution of the Structure and Kinetics of Martensitic Transformations in a Titanium Nickelide upon Isothermal Annealing after Hot Helical Rolling in PHYSICS OF METALS AND METALLOGRAPHY
  • 2020-01-27. Effect of Grain Size and Ageing-Induced Microstructure on Functional Characteristics of a Ti-50.7 at.% Ni Alloy in SHAPE MEMORY AND SUPERELASTICITY
  • 2013-07. Peculiarities of implementation of abnormally high shape memory effects in thermomechanically treated Ti-Ni alloys in INORGANIC MATERIALS: APPLIED RESEARCH
  • 2009-12-17. Effect of heat treatment on the structural and phase transformations and mechanical properties of TiNi alloy subjected to severe plastic deformation by torsion in PHYSICS OF METALS AND METALLOGRAPHY
  • 2016-08-24. Dependence of the functional characteristics of thermomechanically processed titanium nickelide on the size of the structural elements of austenite in PHYSICS OF METALS AND METALLOGRAPHY
  • 2010-07. Investigation on the influence of thermomechanical conditions of induction and structure on the shape memory effects in Ti-Ni alloy in INORGANIC MATERIALS: APPLIED RESEARCH
  • 2017-12-04. Civil Engineering Applications: Specific Properties of NiTi Thick Wires and Their Damping Capabilities, A Review in SHAPE MEMORY AND SUPERELASTICITY
  • 2011-08-23. Crystal lattice of martensite and the reserve of recoverable strain of thermally and thermomechanically treated Ti-Ni shape-memory alloys in PHYSICS OF METALS AND METALLOGRAPHY
  • 2020-01-23. A Review on Additive Manufacturing of Shape-Memory Materials for Biomedical Applications in JOM
  • 2004-05. Use of Thermomechanically Treated Titanium Nickelide for Medical Implants and Tools in METAL SCIENCE AND HEAT TREATMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40830-020-00279-x

    DOI

    http://dx.doi.org/10.1007/s40830-020-00279-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1127457217


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National University of Science and Technology \u201cMISIS\u201d, 4, Leninskiy Prospect, 119049, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.35043.31", 
              "name": [
                "National University of Science and Technology \u201cMISIS\u201d, 4, Leninskiy Prospect, 119049, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ryklina", 
            "givenName": "E.", 
            "id": "sg:person.012541421565.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012541421565.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Science and Technology \u201cMISIS\u201d, 4, Leninskiy Prospect, 119049, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.35043.31", 
              "name": [
                "National University of Science and Technology \u201cMISIS\u201d, 4, Leninskiy Prospect, 119049, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Polyakova", 
            "givenName": "K.", 
            "id": "sg:person.011415502321.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011415502321.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Science and Technology \u201cMISIS\u201d, 4, Leninskiy Prospect, 119049, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.35043.31", 
              "name": [
                "National University of Science and Technology \u201cMISIS\u201d, 4, Leninskiy Prospect, 119049, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prokoshkin", 
            "givenName": "S.", 
            "id": "sg:person.015352705675.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352705675.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s2075113310030032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016727623", 
              "https://doi.org/10.1134/s2075113310030032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0031918x16080123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026893186", 
              "https://doi.org/10.1134/s0031918x16080123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0031918x09120060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039836536", 
              "https://doi.org/10.1134/s0031918x09120060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-020-04013-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124283680", 
              "https://doi.org/10.1007/s11837-020-04013-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:msat.0000043096.68020.05", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041487029", 
              "https://doi.org/10.1023/b:msat.0000043096.68020.05"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40830-020-00269-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124346156", 
              "https://doi.org/10.1007/s40830-020-00269-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0031918x17120079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101537770", 
              "https://doi.org/10.1134/s0031918x17120079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s2075113313040096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010910781", 
              "https://doi.org/10.1134/s2075113313040096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0031918x11020244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008254013", 
              "https://doi.org/10.1134/s0031918x11020244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40830-017-0135-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093156010", 
              "https://doi.org/10.1007/s40830-017-0135-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-05-08", 
        "datePublishedReg": "2020-05-08", 
        "description": "Six various training modes were used for a systematic study of the effect of the initial phase state when training procedure on shape memory effect (SME) and two-way SME (TWSME) in nanostructured Ti\u201350.7 at% Ni alloy. Two types of the B2 austenite structure were chosen: (1) the mixed structure consisting of nanosubgrained and nanograined structures (cold drawing with a true strain of e\u2009=\u20090.6 followed by aging 430\u00a0\u00b0C, 10\u00a0h,) and (2) recrystallized structure (annealing at 700\u00a0\u00b0C, 20\u00a0min followed by the same aging)\u00a0with the average grain size of 10\u00a0\u03bcm. The SME and TWSME training procedure was performed in bending under load. Nanostructured material manifests the maximum recovery strain 14\u201314.7% as a result of using training modes involving R\u2009\u2192\u2009B19\u2032 transformation under load. The maximum TWSME value of 3.2\u20133.5% was realized in the material with both structure types.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s40830-020-00279-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8658437", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136269", 
            "issn": [
              "2199-384X", 
              "2199-3858"
            ], 
            "name": "Shape Memory and Superelasticity", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "shape memory effect", 
          "Ni alloy", 
          "two-way shape memory effect", 
          "average grain size", 
          "two-way SME", 
          "austenite structure", 
          "memory effect", 
          "initial phase state", 
          "phase state", 
          "Ni-rich Ti", 
          "Ti-50.7", 
          "grain size", 
          "mixed structure", 
          "alloy", 
          "maximum recovery", 
          "load", 
          "materials", 
          "mode", 
          "structure", 
          "Ti", 
          "systematic study", 
          "training mode", 
          "structure type", 
          "comparative study", 
          "effect", 
          "size", 
          "procedure", 
          "types", 
          "recovery", 
          "results", 
          "values", 
          "state", 
          "transformation", 
          "study", 
          "training procedure", 
          "training"
        ], 
        "name": "Comparative Study of Shape Memory Effects in Ni-Rich Ti\u2013Ni Alloy After Training in Various Phase States", 
        "pagination": "157-169", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1127457217"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40830-020-00279-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40830-020-00279-x", 
          "https://app.dimensions.ai/details/publication/pub.1127457217"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_846.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s40830-020-00279-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40830-020-00279-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40830-020-00279-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40830-020-00279-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40830-020-00279-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      22 PREDICATES      71 URIs      53 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40830-020-00279-x schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Na608d7009ad7494487b341fe244fb86d
    4 schema:citation sg:pub.10.1007/s11837-020-04013-x
    5 sg:pub.10.1007/s40830-017-0135-y
    6 sg:pub.10.1007/s40830-020-00269-z
    7 sg:pub.10.1023/b:msat.0000043096.68020.05
    8 sg:pub.10.1134/s0031918x09120060
    9 sg:pub.10.1134/s0031918x11020244
    10 sg:pub.10.1134/s0031918x16080123
    11 sg:pub.10.1134/s0031918x17120079
    12 sg:pub.10.1134/s2075113310030032
    13 sg:pub.10.1134/s2075113313040096
    14 schema:datePublished 2020-05-08
    15 schema:datePublishedReg 2020-05-08
    16 schema:description Six various training modes were used for a systematic study of the effect of the initial phase state when training procedure on shape memory effect (SME) and two-way SME (TWSME) in nanostructured Ti–50.7 at% Ni alloy. Two types of the B2 austenite structure were chosen: (1) the mixed structure consisting of nanosubgrained and nanograined structures (cold drawing with a true strain of e = 0.6 followed by aging 430 °C, 10 h,) and (2) recrystallized structure (annealing at 700 °C, 20 min followed by the same aging) with the average grain size of 10 μm. The SME and TWSME training procedure was performed in bending under load. Nanostructured material manifests the maximum recovery strain 14–14.7% as a result of using training modes involving R → B19′ transformation under load. The maximum TWSME value of 3.2–3.5% was realized in the material with both structure types.
    17 schema:genre article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N69b32486b3a649bb88b7dfb199a6d9ce
    21 Nbe5fd610d14944d0b5a23c4ee5c790e2
    22 sg:journal.1136269
    23 schema:keywords Ni alloy
    24 Ni-rich Ti
    25 Ti
    26 Ti-50.7
    27 alloy
    28 austenite structure
    29 average grain size
    30 comparative study
    31 effect
    32 grain size
    33 initial phase state
    34 load
    35 materials
    36 maximum recovery
    37 memory effect
    38 mixed structure
    39 mode
    40 phase state
    41 procedure
    42 recovery
    43 results
    44 shape memory effect
    45 size
    46 state
    47 structure
    48 structure type
    49 study
    50 systematic study
    51 training
    52 training mode
    53 training procedure
    54 transformation
    55 two-way SME
    56 two-way shape memory effect
    57 types
    58 values
    59 schema:name Comparative Study of Shape Memory Effects in Ni-Rich Ti–Ni Alloy After Training in Various Phase States
    60 schema:pagination 157-169
    61 schema:productId N6d789a20612a47e3bc5db9939e8500c7
    62 Na8ff8421839c4861859a27bf29450615
    63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127457217
    64 https://doi.org/10.1007/s40830-020-00279-x
    65 schema:sdDatePublished 2022-05-20T07:37
    66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    67 schema:sdPublisher N9271e62db1b34e5c94bd88beb5a28b54
    68 schema:url https://doi.org/10.1007/s40830-020-00279-x
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset articles
    71 rdf:type schema:ScholarlyArticle
    72 N56c3f89c145247c1a1f1712892415e30 rdf:first sg:person.015352705675.83
    73 rdf:rest rdf:nil
    74 N69b32486b3a649bb88b7dfb199a6d9ce schema:volumeNumber 6
    75 rdf:type schema:PublicationVolume
    76 N6d789a20612a47e3bc5db9939e8500c7 schema:name doi
    77 schema:value 10.1007/s40830-020-00279-x
    78 rdf:type schema:PropertyValue
    79 N78cc3b5326eb419f88645e589206ffda rdf:first sg:person.011415502321.14
    80 rdf:rest N56c3f89c145247c1a1f1712892415e30
    81 N9271e62db1b34e5c94bd88beb5a28b54 schema:name Springer Nature - SN SciGraph project
    82 rdf:type schema:Organization
    83 Na608d7009ad7494487b341fe244fb86d rdf:first sg:person.012541421565.22
    84 rdf:rest N78cc3b5326eb419f88645e589206ffda
    85 Na8ff8421839c4861859a27bf29450615 schema:name dimensions_id
    86 schema:value pub.1127457217
    87 rdf:type schema:PropertyValue
    88 Nbe5fd610d14944d0b5a23c4ee5c790e2 schema:issueNumber 2
    89 rdf:type schema:PublicationIssue
    90 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Engineering
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Materials Engineering
    95 rdf:type schema:DefinedTerm
    96 sg:grant.8658437 http://pending.schema.org/fundedItem sg:pub.10.1007/s40830-020-00279-x
    97 rdf:type schema:MonetaryGrant
    98 sg:journal.1136269 schema:issn 2199-384X
    99 2199-3858
    100 schema:name Shape Memory and Superelasticity
    101 schema:publisher Springer Nature
    102 rdf:type schema:Periodical
    103 sg:person.011415502321.14 schema:affiliation grid-institutes:grid.35043.31
    104 schema:familyName Polyakova
    105 schema:givenName K.
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011415502321.14
    107 rdf:type schema:Person
    108 sg:person.012541421565.22 schema:affiliation grid-institutes:grid.35043.31
    109 schema:familyName Ryklina
    110 schema:givenName E.
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012541421565.22
    112 rdf:type schema:Person
    113 sg:person.015352705675.83 schema:affiliation grid-institutes:grid.35043.31
    114 schema:familyName Prokoshkin
    115 schema:givenName S.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352705675.83
    117 rdf:type schema:Person
    118 sg:pub.10.1007/s11837-020-04013-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1124283680
    119 https://doi.org/10.1007/s11837-020-04013-x
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s40830-017-0135-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1093156010
    122 https://doi.org/10.1007/s40830-017-0135-y
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s40830-020-00269-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1124346156
    125 https://doi.org/10.1007/s40830-020-00269-z
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1023/b:msat.0000043096.68020.05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041487029
    128 https://doi.org/10.1023/b:msat.0000043096.68020.05
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1134/s0031918x09120060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039836536
    131 https://doi.org/10.1134/s0031918x09120060
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1134/s0031918x11020244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008254013
    134 https://doi.org/10.1134/s0031918x11020244
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1134/s0031918x16080123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026893186
    137 https://doi.org/10.1134/s0031918x16080123
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1134/s0031918x17120079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101537770
    140 https://doi.org/10.1134/s0031918x17120079
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1134/s2075113310030032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016727623
    143 https://doi.org/10.1134/s2075113310030032
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1134/s2075113313040096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010910781
    146 https://doi.org/10.1134/s2075113313040096
    147 rdf:type schema:CreativeWork
    148 grid-institutes:grid.35043.31 schema:alternateName National University of Science and Technology “MISIS”, 4, Leninskiy Prospect, 119049, Moscow, Russia
    149 schema:name National University of Science and Technology “MISIS”, 4, Leninskiy Prospect, 119049, Moscow, Russia
    150 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...