Features of a Nanosubgrained Structure in Deformed and Annealed Ti–Ni SMA: A Brief Review View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-11-13

AUTHORS

Sergey Prokoshkin, Sergey Dubinskiy, Vladimir Brailovski

ABSTRACT

Important features of a nanosubgrained structure in Ti–Ni shape memory alloys (SMA) are considered. The thermomechanical treatment of Ti–Ni SMA comprising cold rolling (CR) and post-deformation annealing (PDA) forms a nanocrystalline structure (NCS) providing much higher functional properties than normal coarse-grained structure. The NCS consisting of grains surrounded by high-angle boundaries (“nanograined structure,” NGS) provides higher static shape memory properties than the NCS consisting of subgrains separated by low-angle (< 15°) boundaries (“nanosubgrained structure,” NSS), whereas a mixed NS + NG structure provides the best functional fatigue properties. The following evolution of NCS types formed as a result of PDA is observed: when the CR strain increases from moderate (a true strain e about 0.3) to intermediate (e = 0.5–1) and then to severe (e > 1) levels, the NSS transforms to the mixed NSS + NGS and then to the NGS. The NS structures observed in Ti–Ni after intermediate or severe CR and after PDA do not significantly differ from each other in TEM images. This is due to the development of dynamic polygonization during CR which continues as the static polygonization during PDA. A moderate CR does not reach the dynamic polygonization stage, its dislocation substructure transforms to a statically polygonized NSS upon PDA. More... »

PAGES

336-345

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40830-019-00241-6

DOI

http://dx.doi.org/10.1007/s40830-019-00241-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1122558219


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology \u201cMISIS\u201d, 4 Leninskiy Prospect, 119049, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology \u201cMISIS\u201d, 4 Leninskiy Prospect, 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prokoshkin", 
        "givenName": "Sergey", 
        "id": "sg:person.015352705675.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352705675.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology \u201cMISIS\u201d, 4 Leninskiy Prospect, 119049, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology \u201cMISIS\u201d, 4 Leninskiy Prospect, 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dubinskiy", 
        "givenName": "Sergey", 
        "id": "sg:person.013554422117.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013554422117.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ecole de Technologie Superieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada", 
          "id": "http://www.grid.ac/institutes/grid.459234.d", 
          "name": [
            "Ecole de Technologie Superieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brailovski", 
        "givenName": "Vladimir", 
        "id": "sg:person.0756023647.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756023647.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0031918x10090127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032283929", 
          "https://doi.org/10.1134/s0031918x10090127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0031918x16080123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026893186", 
          "https://doi.org/10.1134/s0031918x16080123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11041-005-0049-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047647909", 
          "https://doi.org/10.1007/s11041-005-0049-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13632-013-0114-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049519448", 
          "https://doi.org/10.1007/s13632-013-0114-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40830-016-0056-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002837007", 
          "https://doi.org/10.1007/s40830-016-0056-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02657316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006180753", 
          "https://doi.org/10.1007/bf02657316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40830-015-0026-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041190506", 
          "https://doi.org/10.1007/s40830-015-0026-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.1990.1414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011949747", 
          "https://doi.org/10.1557/jmr.1990.1414"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-11-13", 
    "datePublishedReg": "2019-11-13", 
    "description": "Important features of a nanosubgrained structure in Ti\u2013Ni shape memory alloys (SMA) are considered. The thermomechanical treatment of Ti\u2013Ni SMA comprising cold rolling (CR) and post-deformation annealing (PDA) forms a nanocrystalline structure (NCS) providing much higher functional properties than normal coarse-grained structure. The NCS consisting of grains surrounded by high-angle boundaries (\u201cnanograined structure,\u201d NGS) provides higher static shape memory properties than the NCS consisting of subgrains separated by low-angle (<\u200915\u00b0) boundaries (\u201cnanosubgrained structure,\u201d NSS), whereas a mixed NS\u2009+\u2009NG structure provides the best functional fatigue properties. The following evolution of NCS types formed as a result of PDA is observed: when the CR strain increases from moderate (a true strain e about 0.3) to intermediate (e\u2009=\u20090.5\u20131) and then to severe (e\u2009>\u20091) levels, the NSS transforms to the mixed NSS\u2009+\u2009NGS and then to the NGS. The NS structures observed in Ti\u2013Ni after intermediate or severe CR and after PDA do not significantly differ from each other in TEM images. This is due to the development of dynamic polygonization during CR which continues as the static polygonization during PDA. A moderate CR does not reach the dynamic polygonization stage, its dislocation substructure transforms to a statically polygonized NSS upon PDA.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40830-019-00241-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8658437", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136269", 
        "issn": [
          "2199-384X", 
          "2199-3858"
        ], 
        "name": "Shape Memory and Superelasticity", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "post-deformation annealing", 
      "Ti\u2013Ni SMA", 
      "cold rolling", 
      "nanocrystalline structure", 
      "functional fatigue properties", 
      "moderate cold rolling", 
      "severe cold rolling", 
      "Ti\u2013Ni shape memory", 
      "high-angle boundaries", 
      "shape memory properties", 
      "low-angle boundaries", 
      "high functional properties", 
      "fatigue properties", 
      "dynamic polygonization", 
      "thermomechanical treatment", 
      "NG structure", 
      "dislocation substructure", 
      "shape memory", 
      "Ti\u2013Ni", 
      "memory properties", 
      "NS structure", 
      "TEM images", 
      "polygonization", 
      "properties", 
      "rolling", 
      "subgrains", 
      "annealing", 
      "structure", 
      "boundaries", 
      "functional properties", 
      "grains", 
      "important features", 
      "deformed", 
      "NSS", 
      "substructure", 
      "Mixed N", 
      "SMA", 
      "consisting", 
      "brief review", 
      "features", 
      "images", 
      "results", 
      "increase", 
      "evolution", 
      "types", 
      "stage", 
      "development", 
      "levels", 
      "memory", 
      "treatment", 
      "review", 
      "NGS"
    ], 
    "name": "Features of a Nanosubgrained Structure in Deformed and Annealed Ti\u2013Ni SMA: A Brief Review", 
    "pagination": "336-345", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1122558219"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40830-019-00241-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40830-019-00241-6", 
      "https://app.dimensions.ai/details/publication/pub.1122558219"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_806.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40830-019-00241-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40830-019-00241-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40830-019-00241-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40830-019-00241-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40830-019-00241-6'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      22 PREDICATES      85 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40830-019-00241-6 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N2fb61c77c3fe491d905842b0d47be40f
4 schema:citation sg:pub.10.1007/bf02657316
5 sg:pub.10.1007/s11041-005-0049-8
6 sg:pub.10.1007/s13632-013-0114-4
7 sg:pub.10.1007/s40830-015-0026-z
8 sg:pub.10.1007/s40830-016-0056-1
9 sg:pub.10.1134/s0031918x10090127
10 sg:pub.10.1134/s0031918x16080123
11 sg:pub.10.1557/jmr.1990.1414
12 schema:datePublished 2019-11-13
13 schema:datePublishedReg 2019-11-13
14 schema:description Important features of a nanosubgrained structure in Ti–Ni shape memory alloys (SMA) are considered. The thermomechanical treatment of Ti–Ni SMA comprising cold rolling (CR) and post-deformation annealing (PDA) forms a nanocrystalline structure (NCS) providing much higher functional properties than normal coarse-grained structure. The NCS consisting of grains surrounded by high-angle boundaries (“nanograined structure,” NGS) provides higher static shape memory properties than the NCS consisting of subgrains separated by low-angle (< 15°) boundaries (“nanosubgrained structure,” NSS), whereas a mixed NS + NG structure provides the best functional fatigue properties. The following evolution of NCS types formed as a result of PDA is observed: when the CR strain increases from moderate (a true strain e about 0.3) to intermediate (e = 0.5–1) and then to severe (e > 1) levels, the NSS transforms to the mixed NSS + NGS and then to the NGS. The NS structures observed in Ti–Ni after intermediate or severe CR and after PDA do not significantly differ from each other in TEM images. This is due to the development of dynamic polygonization during CR which continues as the static polygonization during PDA. A moderate CR does not reach the dynamic polygonization stage, its dislocation substructure transforms to a statically polygonized NSS upon PDA.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N06ab1fa5adeb4b90a679821faf3658b4
19 N95e556f4235f4997b8b07ea209a8d83b
20 sg:journal.1136269
21 schema:keywords Mixed N
22 NG structure
23 NGS
24 NS structure
25 NSS
26 SMA
27 TEM images
28 Ti–Ni
29 Ti–Ni SMA
30 Ti–Ni shape memory
31 annealing
32 boundaries
33 brief review
34 cold rolling
35 consisting
36 deformed
37 development
38 dislocation substructure
39 dynamic polygonization
40 evolution
41 fatigue properties
42 features
43 functional fatigue properties
44 functional properties
45 grains
46 high functional properties
47 high-angle boundaries
48 images
49 important features
50 increase
51 levels
52 low-angle boundaries
53 memory
54 memory properties
55 moderate cold rolling
56 nanocrystalline structure
57 polygonization
58 post-deformation annealing
59 properties
60 results
61 review
62 rolling
63 severe cold rolling
64 shape memory
65 shape memory properties
66 stage
67 structure
68 subgrains
69 substructure
70 thermomechanical treatment
71 treatment
72 types
73 schema:name Features of a Nanosubgrained Structure in Deformed and Annealed Ti–Ni SMA: A Brief Review
74 schema:pagination 336-345
75 schema:productId N458a54841c8d4ed8b534d4eccb448fa1
76 Nf944be096dba4a3e8e0e88d29355d486
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122558219
78 https://doi.org/10.1007/s40830-019-00241-6
79 schema:sdDatePublished 2022-05-20T07:35
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Nc64174d0926d43dfb6f8afbbd14ef0e7
82 schema:url https://doi.org/10.1007/s40830-019-00241-6
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N06ab1fa5adeb4b90a679821faf3658b4 schema:volumeNumber 5
87 rdf:type schema:PublicationVolume
88 N2fb61c77c3fe491d905842b0d47be40f rdf:first sg:person.015352705675.83
89 rdf:rest Na9404e84ef9b462abd9174dbfcc94d86
90 N458a54841c8d4ed8b534d4eccb448fa1 schema:name dimensions_id
91 schema:value pub.1122558219
92 rdf:type schema:PropertyValue
93 N5b205652c222416cbc728919030e813e rdf:first sg:person.0756023647.41
94 rdf:rest rdf:nil
95 N95e556f4235f4997b8b07ea209a8d83b schema:issueNumber 4
96 rdf:type schema:PublicationIssue
97 Na9404e84ef9b462abd9174dbfcc94d86 rdf:first sg:person.013554422117.36
98 rdf:rest N5b205652c222416cbc728919030e813e
99 Nc64174d0926d43dfb6f8afbbd14ef0e7 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Nf944be096dba4a3e8e0e88d29355d486 schema:name doi
102 schema:value 10.1007/s40830-019-00241-6
103 rdf:type schema:PropertyValue
104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
105 schema:name Engineering
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
108 schema:name Materials Engineering
109 rdf:type schema:DefinedTerm
110 sg:grant.8658437 http://pending.schema.org/fundedItem sg:pub.10.1007/s40830-019-00241-6
111 rdf:type schema:MonetaryGrant
112 sg:journal.1136269 schema:issn 2199-384X
113 2199-3858
114 schema:name Shape Memory and Superelasticity
115 schema:publisher Springer Nature
116 rdf:type schema:Periodical
117 sg:person.013554422117.36 schema:affiliation grid-institutes:grid.35043.31
118 schema:familyName Dubinskiy
119 schema:givenName Sergey
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013554422117.36
121 rdf:type schema:Person
122 sg:person.015352705675.83 schema:affiliation grid-institutes:grid.35043.31
123 schema:familyName Prokoshkin
124 schema:givenName Sergey
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352705675.83
126 rdf:type schema:Person
127 sg:person.0756023647.41 schema:affiliation grid-institutes:grid.459234.d
128 schema:familyName Brailovski
129 schema:givenName Vladimir
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756023647.41
131 rdf:type schema:Person
132 sg:pub.10.1007/bf02657316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006180753
133 https://doi.org/10.1007/bf02657316
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s11041-005-0049-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047647909
136 https://doi.org/10.1007/s11041-005-0049-8
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s13632-013-0114-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049519448
139 https://doi.org/10.1007/s13632-013-0114-4
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s40830-015-0026-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041190506
142 https://doi.org/10.1007/s40830-015-0026-z
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s40830-016-0056-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002837007
145 https://doi.org/10.1007/s40830-016-0056-1
146 rdf:type schema:CreativeWork
147 sg:pub.10.1134/s0031918x10090127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032283929
148 https://doi.org/10.1134/s0031918x10090127
149 rdf:type schema:CreativeWork
150 sg:pub.10.1134/s0031918x16080123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026893186
151 https://doi.org/10.1134/s0031918x16080123
152 rdf:type schema:CreativeWork
153 sg:pub.10.1557/jmr.1990.1414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011949747
154 https://doi.org/10.1557/jmr.1990.1414
155 rdf:type schema:CreativeWork
156 grid-institutes:grid.35043.31 schema:alternateName National University of Science and Technology “MISIS”, 4 Leninskiy Prospect, 119049, Moscow, Russia
157 schema:name National University of Science and Technology “MISIS”, 4 Leninskiy Prospect, 119049, Moscow, Russia
158 rdf:type schema:Organization
159 grid-institutes:grid.459234.d schema:alternateName Ecole de Technologie Superieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada
160 schema:name Ecole de Technologie Superieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...