Optimization of Post-processing Annealing Conditions of the Laser Powder Bed-Fused Ti–18Zr–14Nb Shape Memory Alloy: Structure and Functional Properties View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05-29

AUTHORS

A. Kreitcberg, V. Sheremetyev, M. Tsaturyants, S. Prokoshkin, V. Brailovski

ABSTRACT

Ti–18Zr–14Nb (at%) shape memory alloy was processed by laser powder bed fusion (LPBF) and subjected to post-processing annealing treatments in the 500–800 °C temperature range. The microstructure, crystallographic texture, static mechanical properties, and low-cycle fatigue behavior of this alloy in the as-built state and after different post-fusion annealings have been studied. It was found that a strongly columnar microstructure developed during LPBF processing morphed into a predominantly equiaxed grain structure after 800 °C recrystallization annealing. However, the highest number of cycles to failure during high-intensity strain-controlled fatigue testing (2% of strain in a cycle) was obtained after annealing at 500 °C, whereas the lowest number of cycles was found after annealing at 700 °C. A beneficial combination of static and fatigue mechanical properties with a relatively low Young’s modulus makes 500 °C-annealed LPBF Ti–18Zr–14Nb components suitable for biomedical applications, especially where the capacity of LPBF to manufacture geometrically complex and patient-specific load-bearing components makes a difference. More... »

PAGES

172-181

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40830-019-00218-5

DOI

http://dx.doi.org/10.1007/s40830-019-00218-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1115992460


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole de technologie sup\u00e9rieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada", 
          "id": "http://www.grid.ac/institutes/grid.459234.d", 
          "name": [
            "\u00c9cole de technologie sup\u00e9rieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kreitcberg", 
        "givenName": "A.", 
        "id": "sg:person.012534450355.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012534450355.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology \u201cMISiS\u201d, 4 Leninskiy Prospect, 119049, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology \u201cMISiS\u201d, 4 Leninskiy Prospect, 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheremetyev", 
        "givenName": "V.", 
        "id": "sg:person.011117151472.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011117151472.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology \u201cMISiS\u201d, 4 Leninskiy Prospect, 119049, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "\u00c9cole de technologie sup\u00e9rieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada", 
            "National University of Science and Technology \u201cMISiS\u201d, 4 Leninskiy Prospect, 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsaturyants", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology \u201cMISiS\u201d, 4 Leninskiy Prospect, 119049, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology \u201cMISiS\u201d, 4 Leninskiy Prospect, 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prokoshkin", 
        "givenName": "S.", 
        "id": "sg:person.015352705675.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352705675.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole de technologie sup\u00e9rieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada", 
          "id": "http://www.grid.ac/institutes/grid.459234.d", 
          "name": [
            "\u00c9cole de technologie sup\u00e9rieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brailovski", 
        "givenName": "V.", 
        "id": "sg:person.0756023647.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756023647.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s40830-017-0122-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092092042", 
          "https://doi.org/10.1007/s40830-017-0122-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0031918x14090087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045787997", 
          "https://doi.org/10.1134/s0031918x14090087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40830-017-0125-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092061295", 
          "https://doi.org/10.1007/s40830-017-0125-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/mrs.2016.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067967409", 
          "https://doi.org/10.1557/mrs.2016.209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40830-015-0022-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039790494", 
          "https://doi.org/10.1007/s40830-015-0022-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40830-016-0059-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037344643", 
          "https://doi.org/10.1007/s40830-016-0059-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05-29", 
    "datePublishedReg": "2019-05-29", 
    "description": "Ti\u201318Zr\u201314Nb (at%) shape memory alloy was processed by laser powder bed fusion (LPBF) and subjected to post-processing annealing treatments in the 500\u2013800\u00a0\u00b0C temperature range. The microstructure, crystallographic texture, static mechanical properties, and low-cycle fatigue behavior of this alloy in the as-built state and after different post-fusion annealings have been studied. It was found that a strongly columnar microstructure developed during LPBF processing morphed into a predominantly equiaxed grain structure after 800\u00a0\u00b0C recrystallization annealing. However, the highest number of cycles to failure during high-intensity strain-controlled fatigue testing (2% of strain in a cycle) was obtained after annealing at 500\u00a0\u00b0C, whereas the lowest number of cycles was found after annealing at 700\u00a0\u00b0C. A beneficial combination of static and fatigue mechanical properties with a relatively low Young\u2019s modulus makes 500\u00a0\u00b0C-annealed LPBF Ti\u201318Zr\u201314Nb components suitable for biomedical applications, especially where the capacity of LPBF to manufacture geometrically complex and patient-specific load-bearing components makes a difference.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40830-019-00218-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136269", 
        "issn": [
          "2199-384X", 
          "2199-3858"
        ], 
        "name": "Shape Memory and Superelasticity", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "laser powder bed fusion", 
      "Ti-18Zr", 
      "shape memory alloy", 
      "mechanical properties", 
      "memory alloy", 
      "strain-controlled fatigue testing", 
      "low cycle fatigue behavior", 
      "fatigue mechanical properties", 
      "powder bed fusion", 
      "laser powder bed", 
      "low Young's modulus", 
      "static mechanical properties", 
      "load-bearing components", 
      "LPBF processing", 
      "bed fusion", 
      "fatigue behavior", 
      "powder bed", 
      "recrystallization annealing", 
      "grain structure", 
      "fatigue testing", 
      "columnar microstructure", 
      "annealing treatment", 
      "crystallographic texture", 
      "annealing conditions", 
      "Young's modulus", 
      "alloy", 
      "biomedical applications", 
      "microstructure", 
      "temperature range", 
      "modulus", 
      "annealing", 
      "beneficial combination", 
      "properties", 
      "functional properties", 
      "structure", 
      "optimization", 
      "cycle", 
      "static", 
      "bed", 
      "texture", 
      "applications", 
      "processing", 
      "components", 
      "behavior", 
      "range", 
      "conditions", 
      "capacity", 
      "testing", 
      "failure", 
      "combination", 
      "number", 
      "fusion", 
      "state", 
      "low number", 
      "higher number", 
      "differences", 
      "treatment"
    ], 
    "name": "Optimization of Post-processing Annealing Conditions of the Laser Powder Bed-Fused Ti\u201318Zr\u201314Nb Shape Memory Alloy: Structure and Functional Properties", 
    "pagination": "172-181", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1115992460"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40830-019-00218-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40830-019-00218-5", 
      "https://app.dimensions.ai/details/publication/pub.1115992460"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_818.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40830-019-00218-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40830-019-00218-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40830-019-00218-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40830-019-00218-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40830-019-00218-5'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      22 PREDICATES      88 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40830-019-00218-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne30cf8aa794346c7b9062f0e244a5721
4 schema:citation sg:pub.10.1007/s40830-015-0022-3
5 sg:pub.10.1007/s40830-016-0059-y
6 sg:pub.10.1007/s40830-017-0122-3
7 sg:pub.10.1007/s40830-017-0125-0
8 sg:pub.10.1134/s0031918x14090087
9 sg:pub.10.1557/mrs.2016.209
10 schema:datePublished 2019-05-29
11 schema:datePublishedReg 2019-05-29
12 schema:description Ti–18Zr–14Nb (at%) shape memory alloy was processed by laser powder bed fusion (LPBF) and subjected to post-processing annealing treatments in the 500–800 °C temperature range. The microstructure, crystallographic texture, static mechanical properties, and low-cycle fatigue behavior of this alloy in the as-built state and after different post-fusion annealings have been studied. It was found that a strongly columnar microstructure developed during LPBF processing morphed into a predominantly equiaxed grain structure after 800 °C recrystallization annealing. However, the highest number of cycles to failure during high-intensity strain-controlled fatigue testing (2% of strain in a cycle) was obtained after annealing at 500 °C, whereas the lowest number of cycles was found after annealing at 700 °C. A beneficial combination of static and fatigue mechanical properties with a relatively low Young’s modulus makes 500 °C-annealed LPBF Ti–18Zr–14Nb components suitable for biomedical applications, especially where the capacity of LPBF to manufacture geometrically complex and patient-specific load-bearing components makes a difference.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N4c21c1d3117d426a9f9ba95f725643f8
17 Nb18ff4116ef64aa59a56197b14f986ad
18 sg:journal.1136269
19 schema:keywords LPBF processing
20 Ti-18Zr
21 Young's modulus
22 alloy
23 annealing
24 annealing conditions
25 annealing treatment
26 applications
27 bed
28 bed fusion
29 behavior
30 beneficial combination
31 biomedical applications
32 capacity
33 columnar microstructure
34 combination
35 components
36 conditions
37 crystallographic texture
38 cycle
39 differences
40 failure
41 fatigue behavior
42 fatigue mechanical properties
43 fatigue testing
44 functional properties
45 fusion
46 grain structure
47 higher number
48 laser powder bed
49 laser powder bed fusion
50 load-bearing components
51 low Young's modulus
52 low cycle fatigue behavior
53 low number
54 mechanical properties
55 memory alloy
56 microstructure
57 modulus
58 number
59 optimization
60 powder bed
61 powder bed fusion
62 processing
63 properties
64 range
65 recrystallization annealing
66 shape memory alloy
67 state
68 static
69 static mechanical properties
70 strain-controlled fatigue testing
71 structure
72 temperature range
73 testing
74 texture
75 treatment
76 schema:name Optimization of Post-processing Annealing Conditions of the Laser Powder Bed-Fused Ti–18Zr–14Nb Shape Memory Alloy: Structure and Functional Properties
77 schema:pagination 172-181
78 schema:productId N46401511526746e6a0ee74a713fc3c8e
79 Nf14cf357989e4881976ecaf463e2ac41
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115992460
81 https://doi.org/10.1007/s40830-019-00218-5
82 schema:sdDatePublished 2022-05-10T10:24
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher Nb844f3482cb049e9b9511e4ce7fc4317
85 schema:url https://doi.org/10.1007/s40830-019-00218-5
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N05327ef2f15244e0a2be61cc48bfbb53 schema:affiliation grid-institutes:grid.35043.31
90 schema:familyName Tsaturyants
91 schema:givenName M.
92 rdf:type schema:Person
93 N0d71978339984362947e130b092cf29f rdf:first sg:person.0756023647.41
94 rdf:rest rdf:nil
95 N363988595b2641d5bd31e4f7ada74727 rdf:first N05327ef2f15244e0a2be61cc48bfbb53
96 rdf:rest N525e4235329a439486cd7709d4ae9c89
97 N46401511526746e6a0ee74a713fc3c8e schema:name dimensions_id
98 schema:value pub.1115992460
99 rdf:type schema:PropertyValue
100 N4c21c1d3117d426a9f9ba95f725643f8 schema:volumeNumber 5
101 rdf:type schema:PublicationVolume
102 N525e4235329a439486cd7709d4ae9c89 rdf:first sg:person.015352705675.83
103 rdf:rest N0d71978339984362947e130b092cf29f
104 N6f53a4dcf7ad4940ab8929dc92080f78 rdf:first sg:person.011117151472.13
105 rdf:rest N363988595b2641d5bd31e4f7ada74727
106 Nb18ff4116ef64aa59a56197b14f986ad schema:issueNumber 2
107 rdf:type schema:PublicationIssue
108 Nb844f3482cb049e9b9511e4ce7fc4317 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Ne30cf8aa794346c7b9062f0e244a5721 rdf:first sg:person.012534450355.23
111 rdf:rest N6f53a4dcf7ad4940ab8929dc92080f78
112 Nf14cf357989e4881976ecaf463e2ac41 schema:name doi
113 schema:value 10.1007/s40830-019-00218-5
114 rdf:type schema:PropertyValue
115 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
116 schema:name Engineering
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
119 schema:name Materials Engineering
120 rdf:type schema:DefinedTerm
121 sg:journal.1136269 schema:issn 2199-384X
122 2199-3858
123 schema:name Shape Memory and Superelasticity
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.011117151472.13 schema:affiliation grid-institutes:grid.35043.31
127 schema:familyName Sheremetyev
128 schema:givenName V.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011117151472.13
130 rdf:type schema:Person
131 sg:person.012534450355.23 schema:affiliation grid-institutes:grid.459234.d
132 schema:familyName Kreitcberg
133 schema:givenName A.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012534450355.23
135 rdf:type schema:Person
136 sg:person.015352705675.83 schema:affiliation grid-institutes:grid.35043.31
137 schema:familyName Prokoshkin
138 schema:givenName S.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352705675.83
140 rdf:type schema:Person
141 sg:person.0756023647.41 schema:affiliation grid-institutes:grid.459234.d
142 schema:familyName Brailovski
143 schema:givenName V.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756023647.41
145 rdf:type schema:Person
146 sg:pub.10.1007/s40830-015-0022-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039790494
147 https://doi.org/10.1007/s40830-015-0022-3
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s40830-016-0059-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037344643
150 https://doi.org/10.1007/s40830-016-0059-y
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s40830-017-0122-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092092042
153 https://doi.org/10.1007/s40830-017-0122-3
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s40830-017-0125-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092061295
156 https://doi.org/10.1007/s40830-017-0125-0
157 rdf:type schema:CreativeWork
158 sg:pub.10.1134/s0031918x14090087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045787997
159 https://doi.org/10.1134/s0031918x14090087
160 rdf:type schema:CreativeWork
161 sg:pub.10.1557/mrs.2016.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067967409
162 https://doi.org/10.1557/mrs.2016.209
163 rdf:type schema:CreativeWork
164 grid-institutes:grid.35043.31 schema:alternateName National University of Science and Technology “MISiS”, 4 Leninskiy Prospect, 119049, Moscow, Russia
165 schema:name National University of Science and Technology “MISiS”, 4 Leninskiy Prospect, 119049, Moscow, Russia
166 École de technologie supérieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada
167 rdf:type schema:Organization
168 grid-institutes:grid.459234.d schema:alternateName École de technologie supérieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada
169 schema:name École de technologie supérieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, QC, Canada
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...