Additive Manufacturing of Ni-Rich NiTiHf20: Manufacturability, Composition, Density, and Transformation Behavior View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

M. Nematollahi, G. Toker, S. E. Saghaian, J. Salazar, M. Mahtabi, O. Benafan, H. Karaca, M. Elahinia

ABSTRACT

In this work, the effects of process parameters on the fabrication of NiTiHf alloys using selective laser melting are studied. Specimens were printed using bidirectional scanning pattern and with various sets of process parameters of laser power (100–250 W), hatch spacing (60–140 µm), and scanning speed (200–1000 mm/s). Cracking and delamination formation, dimensional accuracy, density, and transformation temperatures were examined. Despite the brittle nature of the alloy, fully dense parts have been produced. Laser scanning speed and volumetric energy density were found to be the most influential process parameters on fabricating defect-free samples. It was shown that transformation temperatures are highly dependent on the process parameters. By proper choice of parameters, it is possible to tailor the austenite finish temperature from 100 to 400 °C. The most influential factors on transformation behavior were found to be the laser power and energy density. It is worth noting that these two parameters at higher levels resulted in high process temperatures and therefore a larger level of Ni evaporation. Among the four parameters that constitute the energy density, the hatch spacing does not significantly affect the transformation temperatures. These findings serve as the foundation of developing HTSMA devices with desired geometrical and functional properties. More... »

PAGES

113-124

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40830-019-00214-9

DOI

http://dx.doi.org/10.1007/s40830-019-00214-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112436609


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Toledo", 
          "id": "https://www.grid.ac/institutes/grid.267337.4", 
          "name": [
            "Dynamic and Smart Systems Laboratory, Mechanical Industrial and Manufacturing Engineering Department, The University of Toledo, 2801 W Bancroft St. MS 312, 43606, Toledo, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nematollahi", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kentucky", 
          "id": "https://www.grid.ac/institutes/grid.266539.d", 
          "name": [
            "Department of Mechanical Engineering, University of Kentucky, 40506-0503, Lexington, KY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toker", 
        "givenName": "G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kentucky", 
          "id": "https://www.grid.ac/institutes/grid.266539.d", 
          "name": [
            "Department of Mechanical Engineering, University of Kentucky, 40506-0503, Lexington, KY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saghaian", 
        "givenName": "S. E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toledo", 
          "id": "https://www.grid.ac/institutes/grid.267337.4", 
          "name": [
            "Dynamic and Smart Systems Laboratory, Mechanical Industrial and Manufacturing Engineering Department, The University of Toledo, 2801 W Bancroft St. MS 312, 43606, Toledo, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salazar", 
        "givenName": "J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Chattanooga", 
          "id": "https://www.grid.ac/institutes/grid.267303.3", 
          "name": [
            "Department of Mechanical Engineering, University of Tennessee at Chattanooga, 37403, Chattanooga, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahtabi", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Glenn Research Center", 
          "id": "https://www.grid.ac/institutes/grid.419077.c", 
          "name": [
            "Materials and Structures Division, NASA Glenn Research Center, 44135, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benafan", 
        "givenName": "O.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kentucky", 
          "id": "https://www.grid.ac/institutes/grid.266539.d", 
          "name": [
            "Department of Mechanical Engineering, University of Kentucky, 40506-0503, Lexington, KY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karaca", 
        "givenName": "H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toledo", 
          "id": "https://www.grid.ac/institutes/grid.267337.4", 
          "name": [
            "Dynamic and Smart Systems Laboratory, Mechanical Industrial and Manufacturing Engineering Department, The University of Toledo, 2801 W Bancroft St. MS 312, 43606, Toledo, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elahinia", 
        "givenName": "M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adem.201300558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002331340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2010.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012633954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2012.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013598076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.addma.2014.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018024618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2016.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020485817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2016.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020485817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2016.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020485817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.10.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021097737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.10.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021097737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.10.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021097737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-010-9796-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021828966", 
          "https://doi.org/10.1007/s11665-010-9796-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-011-3566-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023499442", 
          "https://doi.org/10.1007/s00170-011-3566-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40830-016-0083-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030616040", 
          "https://doi.org/10.1007/s40830-016-0083-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40830-016-0083-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030616040", 
          "https://doi.org/10.1007/s40830-016-0083-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-012-0318-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037301868", 
          "https://doi.org/10.1007/s11665-012-0318-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b15961-57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039552447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.11.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041390745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/1743284714y.0000000598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042977968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2010.12.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051540403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2011.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052493140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jp4/199558747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056976753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0964-1726/25/9/095029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059121616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1045389x16635848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063926963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1045389x16635848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063926963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/095066010x12646898728363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064103351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.394-395.285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072113513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6501/aa5c4f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083439613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2017.03.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084768566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/technologies5020015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084772301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10033-017-0121-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085201933", 
          "https://doi.org/10.1007/s10033-017-0121-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10033-017-0121-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085201933", 
          "https://doi.org/10.1007/s10033-017-0121-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2017.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086086879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-665x/aa7ef4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090638243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.10.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092501701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2017.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092545815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/smasis2013-3070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092790258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/smasis2013-3072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092820257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2017.11.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099627794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmapro.2018.08.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107127211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2019.01.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112202196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2019.01.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112202196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2019.01.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112202196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2019.01.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112202196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2019.01.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112202196"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "In this work, the effects of process parameters on the fabrication of NiTiHf alloys using selective laser melting are studied. Specimens were printed using bidirectional scanning pattern and with various sets of process parameters of laser power (100\u2013250 W), hatch spacing (60\u2013140 \u00b5m), and scanning speed (200\u20131000 mm/s). Cracking and delamination formation, dimensional accuracy, density, and transformation temperatures were examined. Despite the brittle nature of the alloy, fully dense parts have been produced. Laser scanning speed and volumetric energy density were found to be the most influential process parameters on fabricating defect-free samples. It was shown that transformation temperatures are highly dependent on the process parameters. By proper choice of parameters, it is possible to tailor the austenite finish temperature from 100 to 400 \u00b0C. The most influential factors on transformation behavior were found to be the laser power and energy density. It is worth noting that these two parameters at higher levels resulted in high process temperatures and therefore a larger level of Ni evaporation. Among the four parameters that constitute the energy density, the hatch spacing does not significantly affect the transformation temperatures. These findings serve as the foundation of developing HTSMA devices with desired geometrical and functional properties.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40830-019-00214-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136269", 
        "issn": [
          "2199-384X", 
          "2199-3858"
        ], 
        "name": "Shape Memory and Superelasticity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Additive Manufacturing of Ni-Rich NiTiHf20: Manufacturability, Composition, Density, and Transformation Behavior", 
    "pagination": "113-124", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "657eb25fdad1a5a5117876f6c71836a90a120b1768eada27cbbad37c8891c273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40830-019-00214-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112436609"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40830-019-00214-9", 
      "https://app.dimensions.ai/details/publication/pub.1112436609"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29194_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40830-019-00214-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40830-019-00214-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40830-019-00214-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40830-019-00214-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40830-019-00214-9'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40830-019-00214-9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N9478ee13c161421c8ddad3c23c76897d
4 schema:citation sg:pub.10.1007/s00170-011-3566-1
5 sg:pub.10.1007/s10033-017-0121-5
6 sg:pub.10.1007/s11665-010-9796-9
7 sg:pub.10.1007/s11665-012-0318-9
8 sg:pub.10.1007/s40830-016-0083-y
9 https://doi.org/10.1002/adem.201300558
10 https://doi.org/10.1016/j.actamat.2010.02.019
11 https://doi.org/10.1016/j.actamat.2017.10.072
12 https://doi.org/10.1016/j.addma.2014.08.002
13 https://doi.org/10.1016/j.jmapro.2018.08.037
14 https://doi.org/10.1016/j.jmatprotec.2017.06.023
15 https://doi.org/10.1016/j.matdes.2013.11.084
16 https://doi.org/10.1016/j.matdes.2016.10.037
17 https://doi.org/10.1016/j.pmatsci.2011.11.001
18 https://doi.org/10.1016/j.pmatsci.2016.08.001
19 https://doi.org/10.1016/j.scriptamat.2010.12.028
20 https://doi.org/10.1016/j.scriptamat.2012.03.036
21 https://doi.org/10.1016/j.scriptamat.2017.03.025
22 https://doi.org/10.1016/j.scriptamat.2017.10.016
23 https://doi.org/10.1016/j.scriptamat.2017.11.050
24 https://doi.org/10.1016/j.scriptamat.2019.01.019
25 https://doi.org/10.1051/jp4/199558747
26 https://doi.org/10.1088/0964-1726/25/9/095029
27 https://doi.org/10.1088/1361-6501/aa5c4f
28 https://doi.org/10.1088/1361-665x/aa7ef4
29 https://doi.org/10.1115/smasis2013-3070
30 https://doi.org/10.1115/smasis2013-3072
31 https://doi.org/10.1177/1045389x16635848
32 https://doi.org/10.1179/095066010x12646898728363
33 https://doi.org/10.1179/1743284714y.0000000598
34 https://doi.org/10.1201/b15961-57
35 https://doi.org/10.3390/technologies5020015
36 https://doi.org/10.4028/www.scientific.net/msf.394-395.285
37 schema:datePublished 2019-03
38 schema:datePublishedReg 2019-03-01
39 schema:description In this work, the effects of process parameters on the fabrication of NiTiHf alloys using selective laser melting are studied. Specimens were printed using bidirectional scanning pattern and with various sets of process parameters of laser power (100–250 W), hatch spacing (60–140 µm), and scanning speed (200–1000 mm/s). Cracking and delamination formation, dimensional accuracy, density, and transformation temperatures were examined. Despite the brittle nature of the alloy, fully dense parts have been produced. Laser scanning speed and volumetric energy density were found to be the most influential process parameters on fabricating defect-free samples. It was shown that transformation temperatures are highly dependent on the process parameters. By proper choice of parameters, it is possible to tailor the austenite finish temperature from 100 to 400 °C. The most influential factors on transformation behavior were found to be the laser power and energy density. It is worth noting that these two parameters at higher levels resulted in high process temperatures and therefore a larger level of Ni evaporation. Among the four parameters that constitute the energy density, the hatch spacing does not significantly affect the transformation temperatures. These findings serve as the foundation of developing HTSMA devices with desired geometrical and functional properties.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N0207c7014e3c4f3ca87e362e1960b733
44 N0378f066054a41e188aa6d8781de908c
45 sg:journal.1136269
46 schema:name Additive Manufacturing of Ni-Rich NiTiHf20: Manufacturability, Composition, Density, and Transformation Behavior
47 schema:pagination 113-124
48 schema:productId N6a44c286ec614b2fb7a1ef7639845f2c
49 N7c43d83efdf64fd9aaa9aaf701b69673
50 Nd5a5228eb1f6434fa507644fbbfd9d42
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112436609
52 https://doi.org/10.1007/s40830-019-00214-9
53 schema:sdDatePublished 2019-04-11T11:53
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nbaaa147c0832489ab47ed9c8a7f5a3ce
56 schema:url https://link.springer.com/10.1007%2Fs40830-019-00214-9
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N007896c5d0d741ac843a37fc03410224 rdf:first Nf9bfdd28f0a541a8b72fa1b5e3b4fb1c
61 rdf:rest N9ac36a7085164c4d9511813bbe24ed01
62 N0207c7014e3c4f3ca87e362e1960b733 schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 N0378f066054a41e188aa6d8781de908c schema:volumeNumber 5
65 rdf:type schema:PublicationVolume
66 N05d9778acf1a4264b352e7be9bb3bd02 rdf:first Nd86dce76eefd4fd3b4aed765da54e38b
67 rdf:rest N92c4025e6ad74469b3069ba142ab4434
68 N100d83136d454b15b96883f7433fae49 schema:affiliation https://www.grid.ac/institutes/grid.266539.d
69 schema:familyName Karaca
70 schema:givenName H.
71 rdf:type schema:Person
72 N11688ea40cbe4f61804d031c4d976984 schema:affiliation https://www.grid.ac/institutes/grid.267337.4
73 schema:familyName Nematollahi
74 schema:givenName M.
75 rdf:type schema:Person
76 N6a44c286ec614b2fb7a1ef7639845f2c schema:name doi
77 schema:value 10.1007/s40830-019-00214-9
78 rdf:type schema:PropertyValue
79 N6e60b5ea2e2346608e8f5ac8b0df2228 schema:affiliation https://www.grid.ac/institutes/grid.266539.d
80 schema:familyName Saghaian
81 schema:givenName S. E.
82 rdf:type schema:Person
83 N7c43d83efdf64fd9aaa9aaf701b69673 schema:name readcube_id
84 schema:value 657eb25fdad1a5a5117876f6c71836a90a120b1768eada27cbbad37c8891c273
85 rdf:type schema:PropertyValue
86 N85d962dbac7d49b4a6d6a8217be32d9e rdf:first Nb47180e2ad774e07b4a75e7e2c661653
87 rdf:rest rdf:nil
88 N8b086e2ab3ea465883b86e987d8bd21e schema:affiliation https://www.grid.ac/institutes/grid.267337.4
89 schema:familyName Salazar
90 schema:givenName J.
91 rdf:type schema:Person
92 N92c4025e6ad74469b3069ba142ab4434 rdf:first N6e60b5ea2e2346608e8f5ac8b0df2228
93 rdf:rest Nce61b54556064d8c96d2584b2bdaec06
94 N9478ee13c161421c8ddad3c23c76897d rdf:first N11688ea40cbe4f61804d031c4d976984
95 rdf:rest N05d9778acf1a4264b352e7be9bb3bd02
96 N9ac36a7085164c4d9511813bbe24ed01 rdf:first Nba004711ee3248c292b872c48367f6e2
97 rdf:rest Nf2d9ac0556504e368f820eba0c239ccc
98 Nb47180e2ad774e07b4a75e7e2c661653 schema:affiliation https://www.grid.ac/institutes/grid.267337.4
99 schema:familyName Elahinia
100 schema:givenName M.
101 rdf:type schema:Person
102 Nba004711ee3248c292b872c48367f6e2 schema:affiliation https://www.grid.ac/institutes/grid.419077.c
103 schema:familyName Benafan
104 schema:givenName O.
105 rdf:type schema:Person
106 Nbaaa147c0832489ab47ed9c8a7f5a3ce schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nce61b54556064d8c96d2584b2bdaec06 rdf:first N8b086e2ab3ea465883b86e987d8bd21e
109 rdf:rest N007896c5d0d741ac843a37fc03410224
110 Nd5a5228eb1f6434fa507644fbbfd9d42 schema:name dimensions_id
111 schema:value pub.1112436609
112 rdf:type schema:PropertyValue
113 Nd86dce76eefd4fd3b4aed765da54e38b schema:affiliation https://www.grid.ac/institutes/grid.266539.d
114 schema:familyName Toker
115 schema:givenName G.
116 rdf:type schema:Person
117 Nf2d9ac0556504e368f820eba0c239ccc rdf:first N100d83136d454b15b96883f7433fae49
118 rdf:rest N85d962dbac7d49b4a6d6a8217be32d9e
119 Nf9bfdd28f0a541a8b72fa1b5e3b4fb1c schema:affiliation https://www.grid.ac/institutes/grid.267303.3
120 schema:familyName Mahtabi
121 schema:givenName M.
122 rdf:type schema:Person
123 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
124 schema:name Engineering
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
127 schema:name Materials Engineering
128 rdf:type schema:DefinedTerm
129 sg:journal.1136269 schema:issn 2199-384X
130 2199-3858
131 schema:name Shape Memory and Superelasticity
132 rdf:type schema:Periodical
133 sg:pub.10.1007/s00170-011-3566-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023499442
134 https://doi.org/10.1007/s00170-011-3566-1
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s10033-017-0121-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085201933
137 https://doi.org/10.1007/s10033-017-0121-5
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s11665-010-9796-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021828966
140 https://doi.org/10.1007/s11665-010-9796-9
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s11665-012-0318-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037301868
143 https://doi.org/10.1007/s11665-012-0318-9
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s40830-016-0083-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030616040
146 https://doi.org/10.1007/s40830-016-0083-y
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/adem.201300558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002331340
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.actamat.2010.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012633954
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.actamat.2017.10.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092501701
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.addma.2014.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018024618
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jmapro.2018.08.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107127211
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.jmatprotec.2017.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086086879
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.matdes.2013.11.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041390745
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.matdes.2016.10.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021097737
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.pmatsci.2011.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052493140
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.pmatsci.2016.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020485817
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.scriptamat.2010.12.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051540403
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.scriptamat.2012.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013598076
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.scriptamat.2017.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084768566
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.scriptamat.2017.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092545815
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.scriptamat.2017.11.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099627794
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.scriptamat.2019.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112202196
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1051/jp4/199558747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056976753
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1088/0964-1726/25/9/095029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059121616
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1088/1361-6501/aa5c4f schema:sameAs https://app.dimensions.ai/details/publication/pub.1083439613
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1088/1361-665x/aa7ef4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090638243
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1115/smasis2013-3070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092790258
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1115/smasis2013-3072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092820257
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1177/1045389x16635848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063926963
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1179/095066010x12646898728363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064103351
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1179/1743284714y.0000000598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042977968
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1201/b15961-57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039552447
199 rdf:type schema:CreativeWork
200 https://doi.org/10.3390/technologies5020015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084772301
201 rdf:type schema:CreativeWork
202 https://doi.org/10.4028/www.scientific.net/msf.394-395.285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072113513
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.266539.d schema:alternateName University of Kentucky
205 schema:name Department of Mechanical Engineering, University of Kentucky, 40506-0503, Lexington, KY, USA
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.267303.3 schema:alternateName University of Tennessee at Chattanooga
208 schema:name Department of Mechanical Engineering, University of Tennessee at Chattanooga, 37403, Chattanooga, TN, USA
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.267337.4 schema:alternateName University of Toledo
211 schema:name Dynamic and Smart Systems Laboratory, Mechanical Industrial and Manufacturing Engineering Department, The University of Toledo, 2801 W Bancroft St. MS 312, 43606, Toledo, OH, USA
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.419077.c schema:alternateName Glenn Research Center
214 schema:name Materials and Structures Division, NASA Glenn Research Center, 44135, Cleveland, OH, USA
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...