Tailoring the Microstructure in Polycrystalline Co–Ni–Ga High-Temperature Shape Memory Alloys by Hot Extrusion View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

E. Karsten, G. Gerstein, O. Golovko, A. Dalinger, C. Lauhoff, P. Krooss, T. Niendorf, A. Samsonenko, H. J. Maier

ABSTRACT

Co–Ni–Ga alloys represent a new class of promising high-temperature shape memory alloys allowing realization of functional components for applications at elevated temperatures. Single crystals show a fully reversible pseudoelastic response at temperatures up to 500 °C. However, for most industrial applications, the application of polycrystalline material is needed. Polycrystalline Co–Ni–Ga alloys suffer from the anisotropic properties inherent to shape memory alloys, i.e., a strong orientation dependence of transformation strains, and therefore, are prone to intergranular fracture. This drawback can be curtailed by using appropriately textured material with a favorable grain-boundary orientation distribution. The current study discusses the impact of a hot-extrusion process on microstructural evolution and functional properties of polycrystalline Co–Ni–Ga high-temperature shape memory alloys paving the way to their robust application. More... »

PAGES

84-94

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40830-019-00208-7

DOI

http://dx.doi.org/10.1007/s40830-019-00208-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111511286


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Werkstoffkunde (Materials Science), Leibniz Universit\u00e4t Hannover, 30823, Garbsen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karsten", 
        "givenName": "E.", 
        "id": "sg:person.07471370665.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07471370665.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Werkstoffkunde (Materials Science), Leibniz Universit\u00e4t Hannover, 30823, Garbsen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerstein", 
        "givenName": "G.", 
        "id": "sg:person.014540320467.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014540320467.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Werkstoffkunde (Materials Science), Leibniz Universit\u00e4t Hannover, 30823, Garbsen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Golovko", 
        "givenName": "O.", 
        "id": "sg:person.011716376611.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011716376611.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Werkstoffkunde (Materials Science), Leibniz Universit\u00e4t Hannover, 30823, Garbsen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dalinger", 
        "givenName": "A.", 
        "id": "sg:person.012733202051.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733202051.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kassel", 
          "id": "https://www.grid.ac/institutes/grid.5155.4", 
          "name": [
            "Institut f\u00fcr Werkstofftechnik/Metallische Werkstoffe, Universit\u00e4t Kassel, 34125, Kassel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lauhoff", 
        "givenName": "C.", 
        "id": "sg:person.015732230034.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015732230034.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kassel", 
          "id": "https://www.grid.ac/institutes/grid.5155.4", 
          "name": [
            "Institut f\u00fcr Werkstofftechnik/Metallische Werkstoffe, Universit\u00e4t Kassel, 34125, Kassel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krooss", 
        "givenName": "P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kassel", 
          "id": "https://www.grid.ac/institutes/grid.5155.4", 
          "name": [
            "Institut f\u00fcr Werkstofftechnik/Metallische Werkstoffe, Universit\u00e4t Kassel, 34125, Kassel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niendorf", 
        "givenName": "T.", 
        "id": "sg:person.01163426531.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163426531.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Metallurgical Academy of Ukraine", 
          "id": "https://www.grid.ac/institutes/grid.445401.0", 
          "name": [
            "National Metallurgical Academy of Ukraine, Gagarina Avenue, 4, Dnipro, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Samsonenko", 
        "givenName": "A.", 
        "id": "sg:person.016547774317.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016547774317.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Werkstoffkunde (Materials Science), Leibniz Universit\u00e4t Hannover, 30823, Garbsen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maier", 
        "givenName": "H. J.", 
        "id": "sg:person.0606233701.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606233701.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.actamat.2012.02.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001998727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2015.01.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002488574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans.42.2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002777318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2005.09.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004025783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2009.08.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004818925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2006.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015112379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2010.05.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015318673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2004.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019575214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2010.10.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020019509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/17/8/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020981694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2010.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021250137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2015.01.282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022430654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1361/105497106x92835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022692436", 
          "https://doi.org/10.1361/105497106x92835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1361/105497106x92835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022692436", 
          "https://doi.org/10.1361/105497106x92835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2005.10.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023457427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2010.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024500441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786430601175524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040239742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2004.12.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042183906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1042508161", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1042508161", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2003.10.326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045730892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/39/14/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047502427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051527175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-008-9543-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053423684", 
          "https://doi.org/10.1007/s11661-008-9543-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1737481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057802379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1238017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062468177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/095066010x12646898728363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064103351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3139/146.110427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071031528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-19588-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100523027", 
          "https://doi.org/10.1038/s41598-018-19588-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2018.10.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109784792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2018.10.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109784792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2018.10.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109784792"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Co\u2013Ni\u2013Ga alloys represent a new class of promising high-temperature shape memory alloys allowing realization of functional components for applications at elevated temperatures. Single crystals show a fully reversible pseudoelastic response at temperatures up to 500 \u00b0C. However, for most industrial applications, the application of polycrystalline material is needed. Polycrystalline Co\u2013Ni\u2013Ga alloys suffer from the anisotropic properties inherent to shape memory alloys, i.e., a strong orientation dependence of transformation strains, and therefore, are prone to intergranular fracture. This drawback can be curtailed by using appropriately textured material with a favorable grain-boundary orientation distribution. The current study discusses the impact of a hot-extrusion process on microstructural evolution and functional properties of polycrystalline Co\u2013Ni\u2013Ga high-temperature shape memory alloys paving the way to their robust application.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40830-019-00208-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4823051", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136269", 
        "issn": [
          "2199-384X", 
          "2199-3858"
        ], 
        "name": "Shape Memory and Superelasticity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Tailoring the Microstructure in Polycrystalline Co\u2013Ni\u2013Ga High-Temperature Shape Memory Alloys by Hot Extrusion", 
    "pagination": "84-94", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9ab30781b796aee5ab0d452786af9dbf101884728d80391b7c7dd2b77ec61916"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40830-019-00208-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111511286"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40830-019-00208-7", 
      "https://app.dimensions.ai/details/publication/pub.1111511286"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29197_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40830-019-00208-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40830-019-00208-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40830-019-00208-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40830-019-00208-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40830-019-00208-7'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40830-019-00208-7 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N5347e1f7f6554aeabe3165e30ccb4fa9
4 schema:citation sg:pub.10.1007/s11661-008-9543-0
5 sg:pub.10.1038/s41598-018-19588-4
6 sg:pub.10.1361/105497106x92835
7 https://app.dimensions.ai/details/publication/pub.1042508161
8 https://doi.org/10.1016/j.actamat.2009.08.038
9 https://doi.org/10.1016/j.actamat.2010.03.001
10 https://doi.org/10.1016/j.actamat.2010.05.033
11 https://doi.org/10.1016/j.actamat.2010.10.050
12 https://doi.org/10.1016/j.actamat.2012.02.044
13 https://doi.org/10.1016/j.actamat.2015.01.042
14 https://doi.org/10.1016/j.jallcom.2005.09.026
15 https://doi.org/10.1016/j.jallcom.2005.10.056
16 https://doi.org/10.1016/j.jallcom.2015.01.282
17 https://doi.org/10.1016/j.matchar.2010.12.008
18 https://doi.org/10.1016/j.matdes.2016.04.011
19 https://doi.org/10.1016/j.msea.2003.10.326
20 https://doi.org/10.1016/j.pmatsci.2004.10.001
21 https://doi.org/10.1016/j.scriptamat.2004.12.034
22 https://doi.org/10.1016/j.scriptamat.2006.07.005
23 https://doi.org/10.1016/j.scriptamat.2018.10.051
24 https://doi.org/10.1063/1.1737481
25 https://doi.org/10.1080/14786430601175524
26 https://doi.org/10.1088/0022-3727/39/14/002
27 https://doi.org/10.1088/0953-8984/17/8/008
28 https://doi.org/10.1126/science.1238017
29 https://doi.org/10.1179/095066010x12646898728363
30 https://doi.org/10.2320/matertrans.42.2472
31 https://doi.org/10.3139/146.110427
32 schema:datePublished 2019-03
33 schema:datePublishedReg 2019-03-01
34 schema:description Co–Ni–Ga alloys represent a new class of promising high-temperature shape memory alloys allowing realization of functional components for applications at elevated temperatures. Single crystals show a fully reversible pseudoelastic response at temperatures up to 500 °C. However, for most industrial applications, the application of polycrystalline material is needed. Polycrystalline Co–Ni–Ga alloys suffer from the anisotropic properties inherent to shape memory alloys, i.e., a strong orientation dependence of transformation strains, and therefore, are prone to intergranular fracture. This drawback can be curtailed by using appropriately textured material with a favorable grain-boundary orientation distribution. The current study discusses the impact of a hot-extrusion process on microstructural evolution and functional properties of polycrystalline Co–Ni–Ga high-temperature shape memory alloys paving the way to their robust application.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N4e3ea84155ea45a18abf6593d070a6c4
39 Nf56605a3d17d4cf99ddbd70e8a3ce7c1
40 sg:journal.1136269
41 schema:name Tailoring the Microstructure in Polycrystalline Co–Ni–Ga High-Temperature Shape Memory Alloys by Hot Extrusion
42 schema:pagination 84-94
43 schema:productId N06a9a16e073b4487b254aa034397ec94
44 N089b0d91f4a044fe9747de48c7157e83
45 Nec351ecbd0d0424fbcf5d923f72e0b49
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111511286
47 https://doi.org/10.1007/s40830-019-00208-7
48 schema:sdDatePublished 2019-04-11T11:53
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N05f724796ee84ca5a0014bee62c3d9ee
51 schema:url https://link.springer.com/10.1007%2Fs40830-019-00208-7
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N05f724796ee84ca5a0014bee62c3d9ee schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N06a9a16e073b4487b254aa034397ec94 schema:name dimensions_id
58 schema:value pub.1111511286
59 rdf:type schema:PropertyValue
60 N089b0d91f4a044fe9747de48c7157e83 schema:name readcube_id
61 schema:value 9ab30781b796aee5ab0d452786af9dbf101884728d80391b7c7dd2b77ec61916
62 rdf:type schema:PropertyValue
63 N2ca642f9d7604d308bbad78a0e8c3f02 rdf:first sg:person.01163426531.29
64 rdf:rest Nf5ce703a841648c286b3950ec929f655
65 N3e469497c2c14610b57555edf6688dfd rdf:first sg:person.014540320467.07
66 rdf:rest Ndd13898beaca4cde9009b9753da99f30
67 N4e3ea84155ea45a18abf6593d070a6c4 schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 N5347e1f7f6554aeabe3165e30ccb4fa9 rdf:first sg:person.07471370665.41
70 rdf:rest N3e469497c2c14610b57555edf6688dfd
71 N57931a9e77184b4291682a5f04215888 rdf:first Ne29c304915864c4a88d5f17fbc28554d
72 rdf:rest N2ca642f9d7604d308bbad78a0e8c3f02
73 N8670f1b87dfa4b67a38d54d24a8ee1e1 rdf:first sg:person.0606233701.55
74 rdf:rest rdf:nil
75 Nc747598100fe40a7a4fba778fc76a0cf rdf:first sg:person.012733202051.27
76 rdf:rest Ndf0ee500297942e0bde3c8a339671f2c
77 Ndd13898beaca4cde9009b9753da99f30 rdf:first sg:person.011716376611.49
78 rdf:rest Nc747598100fe40a7a4fba778fc76a0cf
79 Ndf0ee500297942e0bde3c8a339671f2c rdf:first sg:person.015732230034.99
80 rdf:rest N57931a9e77184b4291682a5f04215888
81 Ne29c304915864c4a88d5f17fbc28554d schema:affiliation https://www.grid.ac/institutes/grid.5155.4
82 schema:familyName Krooss
83 schema:givenName P.
84 rdf:type schema:Person
85 Nec351ecbd0d0424fbcf5d923f72e0b49 schema:name doi
86 schema:value 10.1007/s40830-019-00208-7
87 rdf:type schema:PropertyValue
88 Nf56605a3d17d4cf99ddbd70e8a3ce7c1 schema:volumeNumber 5
89 rdf:type schema:PublicationVolume
90 Nf5ce703a841648c286b3950ec929f655 rdf:first sg:person.016547774317.12
91 rdf:rest N8670f1b87dfa4b67a38d54d24a8ee1e1
92 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
93 schema:name Engineering
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
96 schema:name Materials Engineering
97 rdf:type schema:DefinedTerm
98 sg:grant.4823051 http://pending.schema.org/fundedItem sg:pub.10.1007/s40830-019-00208-7
99 rdf:type schema:MonetaryGrant
100 sg:journal.1136269 schema:issn 2199-384X
101 2199-3858
102 schema:name Shape Memory and Superelasticity
103 rdf:type schema:Periodical
104 sg:person.01163426531.29 schema:affiliation https://www.grid.ac/institutes/grid.5155.4
105 schema:familyName Niendorf
106 schema:givenName T.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163426531.29
108 rdf:type schema:Person
109 sg:person.011716376611.49 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
110 schema:familyName Golovko
111 schema:givenName O.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011716376611.49
113 rdf:type schema:Person
114 sg:person.012733202051.27 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
115 schema:familyName Dalinger
116 schema:givenName A.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733202051.27
118 rdf:type schema:Person
119 sg:person.014540320467.07 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
120 schema:familyName Gerstein
121 schema:givenName G.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014540320467.07
123 rdf:type schema:Person
124 sg:person.015732230034.99 schema:affiliation https://www.grid.ac/institutes/grid.5155.4
125 schema:familyName Lauhoff
126 schema:givenName C.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015732230034.99
128 rdf:type schema:Person
129 sg:person.016547774317.12 schema:affiliation https://www.grid.ac/institutes/grid.445401.0
130 schema:familyName Samsonenko
131 schema:givenName A.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016547774317.12
133 rdf:type schema:Person
134 sg:person.0606233701.55 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
135 schema:familyName Maier
136 schema:givenName H. J.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606233701.55
138 rdf:type schema:Person
139 sg:person.07471370665.41 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
140 schema:familyName Karsten
141 schema:givenName E.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07471370665.41
143 rdf:type schema:Person
144 sg:pub.10.1007/s11661-008-9543-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053423684
145 https://doi.org/10.1007/s11661-008-9543-0
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/s41598-018-19588-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100523027
148 https://doi.org/10.1038/s41598-018-19588-4
149 rdf:type schema:CreativeWork
150 sg:pub.10.1361/105497106x92835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022692436
151 https://doi.org/10.1361/105497106x92835
152 rdf:type schema:CreativeWork
153 https://app.dimensions.ai/details/publication/pub.1042508161 schema:CreativeWork
154 https://doi.org/10.1016/j.actamat.2009.08.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004818925
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.actamat.2010.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024500441
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.actamat.2010.05.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015318673
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.actamat.2010.10.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020019509
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.actamat.2012.02.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001998727
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.actamat.2015.01.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002488574
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.jallcom.2005.09.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004025783
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.jallcom.2005.10.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023457427
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jallcom.2015.01.282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022430654
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.matchar.2010.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021250137
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.matdes.2016.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051527175
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.msea.2003.10.326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045730892
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.pmatsci.2004.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019575214
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.scriptamat.2004.12.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042183906
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.scriptamat.2006.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015112379
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.scriptamat.2018.10.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109784792
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1063/1.1737481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057802379
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1080/14786430601175524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040239742
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1088/0022-3727/39/14/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047502427
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1088/0953-8984/17/8/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020981694
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.1238017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062468177
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1179/095066010x12646898728363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064103351
197 rdf:type schema:CreativeWork
198 https://doi.org/10.2320/matertrans.42.2472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002777318
199 rdf:type schema:CreativeWork
200 https://doi.org/10.3139/146.110427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071031528
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.445401.0 schema:alternateName National Metallurgical Academy of Ukraine
203 schema:name National Metallurgical Academy of Ukraine, Gagarina Avenue, 4, Dnipro, Ukraine
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.5155.4 schema:alternateName University of Kassel
206 schema:name Institut für Werkstofftechnik/Metallische Werkstoffe, Universität Kassel, 34125, Kassel, Germany
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.9122.8 schema:alternateName University of Hannover
209 schema:name Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, 30823, Garbsen, Germany
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...