Designing NiTiAg Shape Memory Alloys by Vacuum Arc Remelting: First Practical Insights on Melting and Casting View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Gilberto H. T. Álvares da Silva, Jorge Otubo

ABSTRACT

NiTi-based shape memory alloys are successful owing to its capacity to cover specific applications unreachable by binary NiTi. The additions of ternary, and even quaternary, elements are intended to change specific properties. Known for its antibacterial activity, Ag became an alloying element in a search for a functional biomaterial; however, the melting appears to hampering the system exploration. A special melting procedure by vacuum arc remelting was developed based on chemical and thermal analysis, via EDS, XRF, and DSC, assessing the element loss and ingot homogeneity, respectively. By alloy design, different Ag content NiTiAg SMA were produced and analyzed on as-cast condition. The melting procedure developed involves specific feedstock cares and preparation, melting, and some remelting steps. The measured chemical composition slightly differs from the nominal due to alloying element loss and the melting reaction thermodynamics. Being the lower the possible, the remelting steps were optimized to maintain the compromise between chemical composition and compositional homogeneity through the ingot, since the Ag content stabilizes along them, also indicating a limited content possible to be alloyed. Ag-yields are content-dependent, while the Ni:Ti relation is stable, being therefore the melting of NiTiAg SMA better performed by VAR than other melting routes under high vacuum conditions. More... »

PAGES

1-9

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40830-018-0190-z

DOI

http://dx.doi.org/10.1007/s40830-018-0190-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106284273


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituto Tecnol\u00f3gico de Aeron\u00e1utica", 
          "id": "https://www.grid.ac/institutes/grid.419270.9", 
          "name": [
            "Department of Metallurgical and Materials Engineering, Federal University of Ouro Preto, 35400-000, Ouro Preto, Minas Gerais, Brazil", 
            "ITASMART Group, Department of Materials, Aeronautics Institute of Technology, 12228-900, S\u00e3o Jos\u00e9 dos Campos, S\u00e3o Paulo, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00c1lvares da Silva", 
        "givenName": "Gilberto H. T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Tecnol\u00f3gico de Aeron\u00e1utica", 
          "id": "https://www.grid.ac/institutes/grid.419270.9", 
          "name": [
            "ITASMART Group, Department of Materials, Aeronautics Institute of Technology, 12228-900, S\u00e3o Jos\u00e9 dos Campos, S\u00e3o Paulo, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Otubo", 
        "givenName": "Jorge", 
        "id": "sg:person.011406536551.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011406536551.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.msea.2011.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001491232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2012.03.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005311889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-009-9435-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007514748", 
          "https://doi.org/10.1007/s11665-009-9435-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-009-9435-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007514748", 
          "https://doi.org/10.1007/s11665-009-9435-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00728051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009881303", 
          "https://doi.org/10.1007/bf00728051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2006.02.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011994321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-4636(19970615)35:4<451::aid-jbm5>3.0.co;2-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012363968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2010.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012633954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0036-9748(76)90339-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018303045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0036-9748(76)90339-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018303045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vacuum.2011.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019494260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2004.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019575214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40830-015-0013-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022556030", 
          "https://doi.org/10.1007/s40830-015-0013-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-9612(01)00416-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023755895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(99)00292-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024654667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(81)90165-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033638431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(81)90165-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033638431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0142-9612(95)00352-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033895088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40830-015-0011-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034490391", 
          "https://doi.org/10.1007/s40830-015-0011-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbm.b.30369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037793061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbm.b.30369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037793061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmst.2013.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038601482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/000705993798318560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050952362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2011.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052833875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jp4:20031020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056985425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1729603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057796089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07303300310001634961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058338841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/095066010x12646898728363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064103351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.775-776.534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072142425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40195-017-0584-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085054701", 
          "https://doi.org/10.1007/s40195-017-0584-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40195-017-0584-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085054701", 
          "https://doi.org/10.1007/s40195-017-0584-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "NiTi-based shape memory alloys are successful owing to its capacity to cover specific applications unreachable by binary NiTi. The additions of ternary, and even quaternary, elements are intended to change specific properties. Known for its antibacterial activity, Ag became an alloying element in a search for a functional biomaterial; however, the melting appears to hampering the system exploration. A special melting procedure by vacuum arc remelting was developed based on chemical and thermal analysis, via EDS, XRF, and DSC, assessing the element loss and ingot homogeneity, respectively. By alloy design, different Ag content NiTiAg SMA were produced and analyzed on as-cast condition. The melting procedure developed involves specific feedstock cares and preparation, melting, and some remelting steps. The measured chemical composition slightly differs from the nominal due to alloying element loss and the melting reaction thermodynamics. Being the lower the possible, the remelting steps were optimized to maintain the compromise between chemical composition and compositional homogeneity through the ingot, since the Ag content stabilizes along them, also indicating a limited content possible to be alloyed. Ag-yields are content-dependent, while the Ni:Ti relation is stable, being therefore the melting of NiTiAg SMA better performed by VAR than other melting routes under high vacuum conditions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40830-018-0190-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136269", 
        "issn": [
          "2199-384X", 
          "2199-3858"
        ], 
        "name": "Shape Memory and Superelasticity", 
        "type": "Periodical"
      }
    ], 
    "name": "Designing NiTiAg Shape Memory Alloys by Vacuum Arc Remelting: First Practical Insights on Melting and Casting", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2246198c85c384ef7a0faa834cf6564be89ce4f379ba06f592629868ef7848e8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40830-018-0190-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106284273"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40830-018-0190-z", 
      "https://app.dimensions.ai/details/publication/pub.1106284273"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000485.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s40830-018-0190-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40830-018-0190-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40830-018-0190-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40830-018-0190-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40830-018-0190-z'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      51 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40830-018-0190-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N048763396e854fdbb1bfc0e105d224f8
4 schema:citation sg:pub.10.1007/bf00728051
5 sg:pub.10.1007/s11665-009-9435-5
6 sg:pub.10.1007/s40195-017-0584-5
7 sg:pub.10.1007/s40830-015-0011-6
8 sg:pub.10.1007/s40830-015-0013-4
9 https://doi.org/10.1002/(sici)1097-4636(19970615)35:4<451::aid-jbm5>3.0.co;2-g
10 https://doi.org/10.1002/jbm.b.30369
11 https://doi.org/10.1016/0001-6160(81)90165-6
12 https://doi.org/10.1016/0036-9748(76)90339-2
13 https://doi.org/10.1016/0142-9612(95)00352-5
14 https://doi.org/10.1016/j.actamat.2010.02.019
15 https://doi.org/10.1016/j.actbio.2011.02.010
16 https://doi.org/10.1016/j.actbio.2012.03.034
17 https://doi.org/10.1016/j.jmst.2013.05.006
18 https://doi.org/10.1016/j.msea.2006.02.171
19 https://doi.org/10.1016/j.msea.2011.07.024
20 https://doi.org/10.1016/j.pmatsci.2004.10.001
21 https://doi.org/10.1016/j.vacuum.2011.09.012
22 https://doi.org/10.1016/s0142-9612(01)00416-1
23 https://doi.org/10.1016/s0921-5093(99)00292-0
24 https://doi.org/10.1051/jp4:20031020
25 https://doi.org/10.1063/1.1729603
26 https://doi.org/10.1080/07303300310001634961
27 https://doi.org/10.1179/000705993798318560
28 https://doi.org/10.1179/095066010x12646898728363
29 https://doi.org/10.4028/www.scientific.net/msf.775-776.534
30 schema:datePublished 2018-12
31 schema:datePublishedReg 2018-12-01
32 schema:description NiTi-based shape memory alloys are successful owing to its capacity to cover specific applications unreachable by binary NiTi. The additions of ternary, and even quaternary, elements are intended to change specific properties. Known for its antibacterial activity, Ag became an alloying element in a search for a functional biomaterial; however, the melting appears to hampering the system exploration. A special melting procedure by vacuum arc remelting was developed based on chemical and thermal analysis, via EDS, XRF, and DSC, assessing the element loss and ingot homogeneity, respectively. By alloy design, different Ag content NiTiAg SMA were produced and analyzed on as-cast condition. The melting procedure developed involves specific feedstock cares and preparation, melting, and some remelting steps. The measured chemical composition slightly differs from the nominal due to alloying element loss and the melting reaction thermodynamics. Being the lower the possible, the remelting steps were optimized to maintain the compromise between chemical composition and compositional homogeneity through the ingot, since the Ag content stabilizes along them, also indicating a limited content possible to be alloyed. Ag-yields are content-dependent, while the Ni:Ti relation is stable, being therefore the melting of NiTiAg SMA better performed by VAR than other melting routes under high vacuum conditions.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf sg:journal.1136269
37 schema:name Designing NiTiAg Shape Memory Alloys by Vacuum Arc Remelting: First Practical Insights on Melting and Casting
38 schema:pagination 1-9
39 schema:productId N248b2aeec3234e3abb6af03cd13f58be
40 N813f2fb95807470b9a721a0e02e29334
41 Nbd5749ce0a8645fe9cb2ffd3b0df6082
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106284273
43 https://doi.org/10.1007/s40830-018-0190-z
44 schema:sdDatePublished 2019-04-10T19:51
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Nbb7e9b432c4d40f5944109f6b8fb56ad
47 schema:url http://link.springer.com/10.1007/s40830-018-0190-z
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N048763396e854fdbb1bfc0e105d224f8 rdf:first Nd6fd84515cc349b1bc06fbc4bdfc485b
52 rdf:rest N624f93734ceb43f2acaa3c94c94e56fb
53 N248b2aeec3234e3abb6af03cd13f58be schema:name doi
54 schema:value 10.1007/s40830-018-0190-z
55 rdf:type schema:PropertyValue
56 N624f93734ceb43f2acaa3c94c94e56fb rdf:first sg:person.011406536551.21
57 rdf:rest rdf:nil
58 N813f2fb95807470b9a721a0e02e29334 schema:name readcube_id
59 schema:value 2246198c85c384ef7a0faa834cf6564be89ce4f379ba06f592629868ef7848e8
60 rdf:type schema:PropertyValue
61 Nbb7e9b432c4d40f5944109f6b8fb56ad schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nbd5749ce0a8645fe9cb2ffd3b0df6082 schema:name dimensions_id
64 schema:value pub.1106284273
65 rdf:type schema:PropertyValue
66 Nd6fd84515cc349b1bc06fbc4bdfc485b schema:affiliation https://www.grid.ac/institutes/grid.419270.9
67 schema:familyName Álvares da Silva
68 schema:givenName Gilberto H. T.
69 rdf:type schema:Person
70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
71 schema:name Engineering
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
74 schema:name Materials Engineering
75 rdf:type schema:DefinedTerm
76 sg:journal.1136269 schema:issn 2199-384X
77 2199-3858
78 schema:name Shape Memory and Superelasticity
79 rdf:type schema:Periodical
80 sg:person.011406536551.21 schema:affiliation https://www.grid.ac/institutes/grid.419270.9
81 schema:familyName Otubo
82 schema:givenName Jorge
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011406536551.21
84 rdf:type schema:Person
85 sg:pub.10.1007/bf00728051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009881303
86 https://doi.org/10.1007/bf00728051
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s11665-009-9435-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007514748
89 https://doi.org/10.1007/s11665-009-9435-5
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s40195-017-0584-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085054701
92 https://doi.org/10.1007/s40195-017-0584-5
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s40830-015-0011-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034490391
95 https://doi.org/10.1007/s40830-015-0011-6
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s40830-015-0013-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022556030
98 https://doi.org/10.1007/s40830-015-0013-4
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/(sici)1097-4636(19970615)35:4<451::aid-jbm5>3.0.co;2-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1012363968
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1002/jbm.b.30369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037793061
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0001-6160(81)90165-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033638431
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/0036-9748(76)90339-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018303045
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0142-9612(95)00352-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033895088
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.actamat.2010.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012633954
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.actbio.2011.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052833875
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.actbio.2012.03.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005311889
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jmst.2013.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038601482
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.msea.2006.02.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011994321
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.msea.2011.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001491232
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.pmatsci.2004.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019575214
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.vacuum.2011.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019494260
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0142-9612(01)00416-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023755895
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0921-5093(99)00292-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024654667
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1051/jp4:20031020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056985425
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1063/1.1729603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057796089
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/07303300310001634961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058338841
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1179/000705993798318560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050952362
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1179/095066010x12646898728363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064103351
139 rdf:type schema:CreativeWork
140 https://doi.org/10.4028/www.scientific.net/msf.775-776.534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072142425
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.419270.9 schema:alternateName Instituto Tecnológico de Aeronáutica
143 schema:name Department of Metallurgical and Materials Engineering, Federal University of Ouro Preto, 35400-000, Ouro Preto, Minas Gerais, Brazil
144 ITASMART Group, Department of Materials, Aeronautics Institute of Technology, 12228-900, São José dos Campos, São Paulo, Brazil
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...