Pathways Towards Grain Boundary Engineering for Improved Structural Performance in Polycrystalline Co–Ni–Ga Shape Memory Alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

C. Lauhoff, M. Vollmer, P. Krooß, I. Kireeva, Y. I. Chumlyakov, T. Niendorf

ABSTRACT

In recent years, Co–Ni–Ga high-temperature shape memory alloys (HT-SMAs) attracted a lot of scientific attention due to their superior functional material properties. In the single-crystalline state, Co–Ni–Ga HT-SMAs feature a good pseudoelastic response up to 500 °C. However, in the polycrystalline condition Co–Ni–Ga suffers significant grain constraints and premature fracture at grain boundaries. In this regard, crystallographic orientations of the grains being involved as well as morphology and geometrical orientation of the grain boundaries with respect to the loading direction under pseudoelastic deformation are expected to be of crucial importance. Therefore, this study addresses the structural integrity of engineered grain boundaries, i.e., specifically selected grain boundaries in terms of orientation, grain boundary morphology, and crystallographic grain orientations of adjacent grains. Mechanical tests combined with in situ methods and post-mortem scanning electron microscopy investigations are used to shed light on the prevailing microstructural features resulting in any kind of structural degradation. More... »

PAGES

73-83

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40830-018-00204-3

DOI

http://dx.doi.org/10.1007/s40830-018-00204-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110449859


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Kassel", 
          "id": "https://www.grid.ac/institutes/grid.5155.4", 
          "name": [
            "Institut f\u00fcr Werkstofftechnik (Materials Engineering), Universit\u00e4t Kassel, 34125, Kassel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lauhoff", 
        "givenName": "C.", 
        "id": "sg:person.015732230034.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015732230034.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kassel", 
          "id": "https://www.grid.ac/institutes/grid.5155.4", 
          "name": [
            "Institut f\u00fcr Werkstofftechnik (Materials Engineering), Universit\u00e4t Kassel, 34125, Kassel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vollmer", 
        "givenName": "M.", 
        "id": "sg:person.014737435333.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014737435333.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kassel", 
          "id": "https://www.grid.ac/institutes/grid.5155.4", 
          "name": [
            "Institut f\u00fcr Werkstofftechnik (Materials Engineering), Universit\u00e4t Kassel, 34125, Kassel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kroo\u00df", 
        "givenName": "P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Siberian Physical Technical Institute, Tomsk State University, Novosobornay Square 1, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kireeva", 
        "givenName": "I.", 
        "id": "sg:person.013407170311.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013407170311.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Siberian Physical Technical Institute, Tomsk State University, Novosobornay Square 1, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chumlyakov", 
        "givenName": "Y. I.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kassel", 
          "id": "https://www.grid.ac/institutes/grid.5155.4", 
          "name": [
            "Institut f\u00fcr Werkstofftechnik (Materials Engineering), Universit\u00e4t Kassel, 34125, Kassel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niendorf", 
        "givenName": "T.", 
        "id": "sg:person.01163426531.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163426531.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.actamat.2015.01.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002488574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4820429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002721207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2015.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005452403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40830-015-0003-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005557583", 
          "https://doi.org/10.1007/s40830-015-0003-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02665046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005651280", 
          "https://doi.org/10.1007/bf02665046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02665046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005651280", 
          "https://doi.org/10.1007/bf02665046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2014.07.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005943587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201103019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010115594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2013.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013149008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2006.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015112379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2009.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015293456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.01.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017165196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.intermet.2012.10.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017271365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2009.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019560405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2010.10.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020019509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/17/8/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020981694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2016.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021522857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2016.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021522857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2015.01.282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022430654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cossms.2016.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023444954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cossms.2016.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023444954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2005.10.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023457427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030979371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030979371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2013.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032087575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2011.09.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033516605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02656811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039824168", 
          "https://doi.org/10.1007/bf02656811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2007.02.146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040177072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2016.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042760826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2016.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042760826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2016.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042760826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2016.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042760826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40830-015-0049-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045650294", 
          "https://doi.org/10.1007/s40830-015-0049-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2003.10.324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049984209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051527175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-008-9543-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053423684", 
          "https://doi.org/10.1007/s11661-008-9543-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jp4:2003936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056985620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4817170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058080212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1202232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062464470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1238017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062468177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/095066010x12646898728363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064103351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3139/146.110427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071031528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.738-739.82", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072140311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2017.04.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085088035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-00383-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091298602", 
          "https://doi.org/10.1038/s41467-017-00383-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40830-018-0156-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101224037", 
          "https://doi.org/10.1007/s40830-018-0156-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40830-018-0156-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101224037", 
          "https://doi.org/10.1007/s40830-018-0156-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40830-018-0156-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101224037", 
          "https://doi.org/10.1007/s40830-018-0156-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "In recent years, Co\u2013Ni\u2013Ga high-temperature shape memory alloys (HT-SMAs) attracted a lot of scientific attention due to their superior functional material properties. In the single-crystalline state, Co\u2013Ni\u2013Ga HT-SMAs feature a good pseudoelastic response up to 500 \u00b0C. However, in the polycrystalline condition Co\u2013Ni\u2013Ga suffers significant grain constraints and premature fracture at grain boundaries. In this regard, crystallographic orientations of the grains being involved as well as morphology and geometrical orientation of the grain boundaries with respect to the loading direction under pseudoelastic deformation are expected to be of crucial importance. Therefore, this study addresses the structural integrity of engineered grain boundaries, i.e., specifically selected grain boundaries in terms of orientation, grain boundary morphology, and crystallographic grain orientations of adjacent grains. Mechanical tests combined with in situ methods and post-mortem scanning electron microscopy investigations are used to shed light on the prevailing microstructural features resulting in any kind of structural degradation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40830-018-00204-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4823051", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136269", 
        "issn": [
          "2199-384X", 
          "2199-3858"
        ], 
        "name": "Shape Memory and Superelasticity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Pathways Towards Grain Boundary Engineering for Improved Structural Performance in Polycrystalline Co\u2013Ni\u2013Ga Shape Memory Alloys", 
    "pagination": "73-83", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "91b27789f66f517f5bc432f851004d00b0c62336a720129cb0fed77486a7489d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40830-018-00204-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110449859"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40830-018-00204-3", 
      "https://app.dimensions.ai/details/publication/pub.1110449859"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29222_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40830-018-00204-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40830-018-00204-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40830-018-00204-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40830-018-00204-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40830-018-00204-3'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40830-018-00204-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N4ca8340b0f8248aa8136ad7e92e9609e
4 schema:citation sg:pub.10.1007/bf02656811
5 sg:pub.10.1007/bf02665046
6 sg:pub.10.1007/s11661-008-9543-0
7 sg:pub.10.1007/s40830-015-0003-6
8 sg:pub.10.1007/s40830-015-0049-5
9 sg:pub.10.1007/s40830-018-0156-1
10 sg:pub.10.1038/s41467-017-00383-0
11 https://doi.org/10.1002/adfm.201103019
12 https://doi.org/10.1016/j.actamat.2005.05.013
13 https://doi.org/10.1016/j.actamat.2009.02.007
14 https://doi.org/10.1016/j.actamat.2010.10.050
15 https://doi.org/10.1016/j.actamat.2011.09.054
16 https://doi.org/10.1016/j.actamat.2013.03.022
17 https://doi.org/10.1016/j.actamat.2014.01.019
18 https://doi.org/10.1016/j.actamat.2015.01.042
19 https://doi.org/10.1016/j.cossms.2016.06.005
20 https://doi.org/10.1016/j.intermet.2012.10.018
21 https://doi.org/10.1016/j.jallcom.2005.10.056
22 https://doi.org/10.1016/j.jallcom.2015.01.282
23 https://doi.org/10.1016/j.matdes.2014.07.070
24 https://doi.org/10.1016/j.matdes.2016.04.011
25 https://doi.org/10.1016/j.msea.2003.10.324
26 https://doi.org/10.1016/j.msea.2007.02.146
27 https://doi.org/10.1016/j.scriptamat.2006.07.005
28 https://doi.org/10.1016/j.scriptamat.2009.11.006
29 https://doi.org/10.1016/j.scriptamat.2013.09.006
30 https://doi.org/10.1016/j.scriptamat.2015.06.013
31 https://doi.org/10.1016/j.scriptamat.2016.01.014
32 https://doi.org/10.1016/j.scriptamat.2016.08.002
33 https://doi.org/10.1016/j.scriptamat.2017.04.017
34 https://doi.org/10.1051/jp4:2003936
35 https://doi.org/10.1063/1.4817170
36 https://doi.org/10.1063/1.4820429
37 https://doi.org/10.1088/0953-8984/17/8/008
38 https://doi.org/10.1126/science.1202232
39 https://doi.org/10.1126/science.1238017
40 https://doi.org/10.1179/095066010x12646898728363
41 https://doi.org/10.3139/146.110427
42 https://doi.org/10.4028/www.scientific.net/msf.738-739.82
43 schema:datePublished 2019-03
44 schema:datePublishedReg 2019-03-01
45 schema:description In recent years, Co–Ni–Ga high-temperature shape memory alloys (HT-SMAs) attracted a lot of scientific attention due to their superior functional material properties. In the single-crystalline state, Co–Ni–Ga HT-SMAs feature a good pseudoelastic response up to 500 °C. However, in the polycrystalline condition Co–Ni–Ga suffers significant grain constraints and premature fracture at grain boundaries. In this regard, crystallographic orientations of the grains being involved as well as morphology and geometrical orientation of the grain boundaries with respect to the loading direction under pseudoelastic deformation are expected to be of crucial importance. Therefore, this study addresses the structural integrity of engineered grain boundaries, i.e., specifically selected grain boundaries in terms of orientation, grain boundary morphology, and crystallographic grain orientations of adjacent grains. Mechanical tests combined with in situ methods and post-mortem scanning electron microscopy investigations are used to shed light on the prevailing microstructural features resulting in any kind of structural degradation.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N1e018d01fa22491485b8089a3baf2413
50 N54f96d909e6848cb9b0c6866d89b7964
51 sg:journal.1136269
52 schema:name Pathways Towards Grain Boundary Engineering for Improved Structural Performance in Polycrystalline Co–Ni–Ga Shape Memory Alloys
53 schema:pagination 73-83
54 schema:productId N9c5bf27c1c4c4b2299d5dc8d67fc0de7
55 Nd67d8bd050d5479a811f5e7bfd6d8a7d
56 Nfc324a1710644e6b927a76438558bdf3
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110449859
58 https://doi.org/10.1007/s40830-018-00204-3
59 schema:sdDatePublished 2019-04-11T11:58
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nb7234a07420a40a5a96343f0b6ce2894
62 schema:url https://link.springer.com/10.1007%2Fs40830-018-00204-3
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N1e018d01fa22491485b8089a3baf2413 schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 N4ca8340b0f8248aa8136ad7e92e9609e rdf:first sg:person.015732230034.99
69 rdf:rest Na70415cc6a3c4b4c82740869b7ccc93b
70 N54f96d909e6848cb9b0c6866d89b7964 schema:volumeNumber 5
71 rdf:type schema:PublicationVolume
72 N5dc41c8b169c427287f8173d3047a3a5 schema:affiliation https://www.grid.ac/institutes/grid.5155.4
73 schema:familyName Krooß
74 schema:givenName P.
75 rdf:type schema:Person
76 N6a06ec109df24462aaa7bfbf8604cf38 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
77 schema:familyName Chumlyakov
78 schema:givenName Y. I.
79 rdf:type schema:Person
80 N6bf0039f34f84744b9e666a17806e883 rdf:first N5dc41c8b169c427287f8173d3047a3a5
81 rdf:rest Na7adb215446c4e73b6f25565e8ed8599
82 N89f8579b1dd345f086a6dc3b48f3dae6 rdf:first N6a06ec109df24462aaa7bfbf8604cf38
83 rdf:rest Nddb70a1ee03040ae941221d7bde78c00
84 N9c5bf27c1c4c4b2299d5dc8d67fc0de7 schema:name doi
85 schema:value 10.1007/s40830-018-00204-3
86 rdf:type schema:PropertyValue
87 Na70415cc6a3c4b4c82740869b7ccc93b rdf:first sg:person.014737435333.63
88 rdf:rest N6bf0039f34f84744b9e666a17806e883
89 Na7adb215446c4e73b6f25565e8ed8599 rdf:first sg:person.013407170311.85
90 rdf:rest N89f8579b1dd345f086a6dc3b48f3dae6
91 Nb7234a07420a40a5a96343f0b6ce2894 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Nd67d8bd050d5479a811f5e7bfd6d8a7d schema:name dimensions_id
94 schema:value pub.1110449859
95 rdf:type schema:PropertyValue
96 Nddb70a1ee03040ae941221d7bde78c00 rdf:first sg:person.01163426531.29
97 rdf:rest rdf:nil
98 Nfc324a1710644e6b927a76438558bdf3 schema:name readcube_id
99 schema:value 91b27789f66f517f5bc432f851004d00b0c62336a720129cb0fed77486a7489d
100 rdf:type schema:PropertyValue
101 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
102 schema:name Engineering
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
105 schema:name Materials Engineering
106 rdf:type schema:DefinedTerm
107 sg:grant.4823051 http://pending.schema.org/fundedItem sg:pub.10.1007/s40830-018-00204-3
108 rdf:type schema:MonetaryGrant
109 sg:journal.1136269 schema:issn 2199-384X
110 2199-3858
111 schema:name Shape Memory and Superelasticity
112 rdf:type schema:Periodical
113 sg:person.01163426531.29 schema:affiliation https://www.grid.ac/institutes/grid.5155.4
114 schema:familyName Niendorf
115 schema:givenName T.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163426531.29
117 rdf:type schema:Person
118 sg:person.013407170311.85 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
119 schema:familyName Kireeva
120 schema:givenName I.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013407170311.85
122 rdf:type schema:Person
123 sg:person.014737435333.63 schema:affiliation https://www.grid.ac/institutes/grid.5155.4
124 schema:familyName Vollmer
125 schema:givenName M.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014737435333.63
127 rdf:type schema:Person
128 sg:person.015732230034.99 schema:affiliation https://www.grid.ac/institutes/grid.5155.4
129 schema:familyName Lauhoff
130 schema:givenName C.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015732230034.99
132 rdf:type schema:Person
133 sg:pub.10.1007/bf02656811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039824168
134 https://doi.org/10.1007/bf02656811
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf02665046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005651280
137 https://doi.org/10.1007/bf02665046
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s11661-008-9543-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053423684
140 https://doi.org/10.1007/s11661-008-9543-0
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s40830-015-0003-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005557583
143 https://doi.org/10.1007/s40830-015-0003-6
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s40830-015-0049-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045650294
146 https://doi.org/10.1007/s40830-015-0049-5
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s40830-018-0156-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101224037
149 https://doi.org/10.1007/s40830-018-0156-1
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/s41467-017-00383-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091298602
152 https://doi.org/10.1038/s41467-017-00383-0
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/adfm.201103019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010115594
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.actamat.2005.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030979371
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.actamat.2009.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019560405
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.actamat.2010.10.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020019509
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.actamat.2011.09.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033516605
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.actamat.2013.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013149008
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.actamat.2014.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017165196
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.actamat.2015.01.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002488574
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.cossms.2016.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023444954
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.intermet.2012.10.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017271365
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.jallcom.2005.10.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023457427
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.jallcom.2015.01.282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022430654
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.matdes.2014.07.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005943587
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.matdes.2016.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051527175
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.msea.2003.10.324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049984209
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.msea.2007.02.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040177072
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.scriptamat.2006.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015112379
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.scriptamat.2009.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015293456
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.scriptamat.2013.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032087575
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.scriptamat.2015.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005452403
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.scriptamat.2016.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042760826
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.scriptamat.2016.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021522857
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.scriptamat.2017.04.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085088035
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1051/jp4:2003936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056985620
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1063/1.4817170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058080212
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1063/1.4820429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002721207
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1088/0953-8984/17/8/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020981694
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1126/science.1202232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464470
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1126/science.1238017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062468177
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1179/095066010x12646898728363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064103351
213 rdf:type schema:CreativeWork
214 https://doi.org/10.3139/146.110427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071031528
215 rdf:type schema:CreativeWork
216 https://doi.org/10.4028/www.scientific.net/msf.738-739.82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072140311
217 rdf:type schema:CreativeWork
218 https://www.grid.ac/institutes/grid.5155.4 schema:alternateName University of Kassel
219 schema:name Institut für Werkstofftechnik (Materials Engineering), Universität Kassel, 34125, Kassel, Germany
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.77602.34 schema:alternateName Tomsk State University
222 schema:name Siberian Physical Technical Institute, Tomsk State University, Novosobornay Square 1, 634050, Tomsk, Russia
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...