Effect of Aging Heat Treatment on the High Cycle Fatigue Life of Ni50.3Ti29.7Hf20 High-Temperature Shape Memory Alloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Hasan H. Saygili, H. Onat Tugrul, Benat Kockar

ABSTRACT

Shape memory alloys can be utilized as actuators for several applications in aerospace industry which require high strength and stable actuation cycles together with the transformation temperatures above 100 °C. Aging is one of the methods for Nickel rich NiTiHf alloys that adjusts the transformation temperatures and enhances the cyclic stability due to the formation of nano-sized precipitates. In this study, the high cycle functional fatigue life and behavior of the extruded and aged Ni50.3Ti29.7Hf20 high-temperature shape memory alloy were investigated in order to reveal the effect of aging on the stability of the actuation strain and transformation temperatures. The aging was conducted at 550 °C for 3 h. 200 MPa was chosen in the functional fatigue experiments since no irrecoverable strain was determined under this stress magnitude for the extruded and the aged samples in the load-biased heating cooling experiments. The fatigue experiments were conducted twice to check the repeatability of the shape memory properties of the samples and it was observed that the life cycle of the aged sample was determined as 20,337 and the extruded sample completely lost the shape recovery ability after 5000 cycles. More... »

PAGES

32-41

Journal

TITLE

Shape Memory and Superelasticity

ISSUE

1

VOLUME

5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40830-018-00202-5

DOI

http://dx.doi.org/10.1007/s40830-018-00202-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110449858


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hacettepe University", 
          "id": "https://www.grid.ac/institutes/grid.14442.37", 
          "name": [
            "Department of Mechanical Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey", 
            "Turkish Aviation Industry, Rotary Wing Technology Center, Kahramankazan, 06980, Ankara, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saygili", 
        "givenName": "Hasan H.", 
        "id": "sg:person.014653363513.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014653363513.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hacettepe University", 
          "id": "https://www.grid.ac/institutes/grid.14442.37", 
          "name": [
            "Department of Mechanical Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tugrul", 
        "givenName": "H. Onat", 
        "id": "sg:person.015745132723.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745132723.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hacettepe University", 
          "id": "https://www.grid.ac/institutes/grid.14442.37", 
          "name": [
            "Department of Mechanical Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kockar", 
        "givenName": "Benat", 
        "id": "sg:person.07567172575.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567172575.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0956-7151(94)90319-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005537696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(94)90319-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005537696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-577x(00)00091-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013864953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2006.02.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016040174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(86)90263-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017092920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(86)90263-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017092920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2004.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019575214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2010.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021743827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2008.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022499530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.intermet.2008.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031154267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.09.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038167327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.483469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040791421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2013.06.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041060304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/1743284714y.0000000598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042977968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.03.163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043208846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.03.163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043208846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.03.163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043208846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2013.08.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045259450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnucmat.2006.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050735440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2010.12.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051540403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1045389x03034687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054065943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1045389x03034687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054065943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1793604712500385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063024270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/104538903039134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063925528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/104538903039134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063925528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1045389x04042793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063925638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1045389x04042793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063925638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/095066010x12646898728363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064103351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09544100jaero211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064453828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09544100jaero211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064453828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09544100jaero211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064453828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.07.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090678162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2018.04.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103243586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2018.04.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103243586"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Shape memory alloys can be utilized as actuators for several applications in aerospace industry which require high strength and stable actuation cycles together with the transformation temperatures above 100 \u00b0C. Aging is one of the methods for Nickel rich NiTiHf alloys that adjusts the transformation temperatures and enhances the cyclic stability due to the formation of nano-sized precipitates. In this study, the high cycle functional fatigue life and behavior of the extruded and aged Ni50.3Ti29.7Hf20 high-temperature shape memory alloy were investigated in order to reveal the effect of aging on the stability of the actuation strain and transformation temperatures. The aging was conducted at 550 \u00b0C for 3 h. 200 MPa was chosen in the functional fatigue experiments since no irrecoverable strain was determined under this stress magnitude for the extruded and the aged samples in the load-biased heating cooling experiments. The fatigue experiments were conducted twice to check the repeatability of the shape memory properties of the samples and it was observed that the life cycle of the aged sample was determined as 20,337 and the extruded sample completely lost the shape recovery ability after 5000 cycles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s40830-018-00202-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136269", 
        "issn": [
          "2199-384X", 
          "2199-3858"
        ], 
        "name": "Shape Memory and Superelasticity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Effect of Aging Heat Treatment on the High Cycle Fatigue Life of Ni50.3Ti29.7Hf20 High-Temperature Shape Memory Alloy", 
    "pagination": "32-41", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4da0a70c558935b34008040f673fab05f48aa6941ddbd9bc1a93fcfd94ed0cc5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40830-018-00202-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110449858"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40830-018-00202-5", 
      "https://app.dimensions.ai/details/publication/pub.1110449858"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29216_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs40830-018-00202-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40830-018-00202-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40830-018-00202-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40830-018-00202-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40830-018-00202-5'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40830-018-00202-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ncab8348a98114aa7897c072d0f26bdca
4 schema:citation https://doi.org/10.1016/0001-6160(86)90263-4
5 https://doi.org/10.1016/0956-7151(94)90319-0
6 https://doi.org/10.1016/j.actamat.2008.04.001
7 https://doi.org/10.1016/j.actamat.2010.08.003
8 https://doi.org/10.1016/j.actamat.2013.06.057
9 https://doi.org/10.1016/j.actamat.2013.08.048
10 https://doi.org/10.1016/j.actamat.2014.09.027
11 https://doi.org/10.1016/j.actamat.2017.07.035
12 https://doi.org/10.1016/j.actamat.2018.04.021
13 https://doi.org/10.1016/j.intermet.2008.02.005
14 https://doi.org/10.1016/j.jnucmat.2006.12.007
15 https://doi.org/10.1016/j.matdes.2016.03.163
16 https://doi.org/10.1016/j.pmatsci.2004.10.001
17 https://doi.org/10.1016/j.scriptamat.2006.02.029
18 https://doi.org/10.1016/j.scriptamat.2010.12.028
19 https://doi.org/10.1016/s0167-577x(00)00091-4
20 https://doi.org/10.1117/12.483469
21 https://doi.org/10.1142/s1793604712500385
22 https://doi.org/10.1177/104538903039134
23 https://doi.org/10.1177/1045389x03034687
24 https://doi.org/10.1177/1045389x04042793
25 https://doi.org/10.1179/095066010x12646898728363
26 https://doi.org/10.1179/1743284714y.0000000598
27 https://doi.org/10.1243/09544100jaero211
28 schema:datePublished 2019-03
29 schema:datePublishedReg 2019-03-01
30 schema:description Shape memory alloys can be utilized as actuators for several applications in aerospace industry which require high strength and stable actuation cycles together with the transformation temperatures above 100 °C. Aging is one of the methods for Nickel rich NiTiHf alloys that adjusts the transformation temperatures and enhances the cyclic stability due to the formation of nano-sized precipitates. In this study, the high cycle functional fatigue life and behavior of the extruded and aged Ni50.3Ti29.7Hf20 high-temperature shape memory alloy were investigated in order to reveal the effect of aging on the stability of the actuation strain and transformation temperatures. The aging was conducted at 550 °C for 3 h. 200 MPa was chosen in the functional fatigue experiments since no irrecoverable strain was determined under this stress magnitude for the extruded and the aged samples in the load-biased heating cooling experiments. The fatigue experiments were conducted twice to check the repeatability of the shape memory properties of the samples and it was observed that the life cycle of the aged sample was determined as 20,337 and the extruded sample completely lost the shape recovery ability after 5000 cycles.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N43ed8c1d75c64123bbb8333470f1546d
35 N7e6943009c6749b587e3d71711a95254
36 sg:journal.1136269
37 schema:name Effect of Aging Heat Treatment on the High Cycle Fatigue Life of Ni50.3Ti29.7Hf20 High-Temperature Shape Memory Alloy
38 schema:pagination 32-41
39 schema:productId N17cf937b0c6342d4a28988f502cedd40
40 N4888911df3e2443d8524a4e30d808bd9
41 Ncdb765cddf694021b0f351e6071eb52d
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110449858
43 https://doi.org/10.1007/s40830-018-00202-5
44 schema:sdDatePublished 2019-04-11T11:57
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N394149563bc94d14aefc26830edb2d36
47 schema:url https://link.springer.com/10.1007%2Fs40830-018-00202-5
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N17cf937b0c6342d4a28988f502cedd40 schema:name readcube_id
52 schema:value 4da0a70c558935b34008040f673fab05f48aa6941ddbd9bc1a93fcfd94ed0cc5
53 rdf:type schema:PropertyValue
54 N394149563bc94d14aefc26830edb2d36 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N43ed8c1d75c64123bbb8333470f1546d schema:volumeNumber 5
57 rdf:type schema:PublicationVolume
58 N4888911df3e2443d8524a4e30d808bd9 schema:name doi
59 schema:value 10.1007/s40830-018-00202-5
60 rdf:type schema:PropertyValue
61 N7e6943009c6749b587e3d71711a95254 schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 Ncab8348a98114aa7897c072d0f26bdca rdf:first sg:person.014653363513.38
64 rdf:rest Ne3d8074723f7408cbe93f330643ed896
65 Ncdb765cddf694021b0f351e6071eb52d schema:name dimensions_id
66 schema:value pub.1110449858
67 rdf:type schema:PropertyValue
68 Nd129385a97e8428b89d4fa5012fe8496 rdf:first sg:person.07567172575.64
69 rdf:rest rdf:nil
70 Ne3d8074723f7408cbe93f330643ed896 rdf:first sg:person.015745132723.21
71 rdf:rest Nd129385a97e8428b89d4fa5012fe8496
72 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
73 schema:name Engineering
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
76 schema:name Materials Engineering
77 rdf:type schema:DefinedTerm
78 sg:journal.1136269 schema:issn 2199-384X
79 2199-3858
80 schema:name Shape Memory and Superelasticity
81 rdf:type schema:Periodical
82 sg:person.014653363513.38 schema:affiliation https://www.grid.ac/institutes/grid.14442.37
83 schema:familyName Saygili
84 schema:givenName Hasan H.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014653363513.38
86 rdf:type schema:Person
87 sg:person.015745132723.21 schema:affiliation https://www.grid.ac/institutes/grid.14442.37
88 schema:familyName Tugrul
89 schema:givenName H. Onat
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745132723.21
91 rdf:type schema:Person
92 sg:person.07567172575.64 schema:affiliation https://www.grid.ac/institutes/grid.14442.37
93 schema:familyName Kockar
94 schema:givenName Benat
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567172575.64
96 rdf:type schema:Person
97 https://doi.org/10.1016/0001-6160(86)90263-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017092920
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0956-7151(94)90319-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005537696
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.actamat.2008.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022499530
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.actamat.2010.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021743827
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.actamat.2013.06.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041060304
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.actamat.2013.08.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045259450
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.actamat.2014.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038167327
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.actamat.2017.07.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090678162
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.actamat.2018.04.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103243586
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.intermet.2008.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031154267
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.jnucmat.2006.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050735440
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.matdes.2016.03.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043208846
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.pmatsci.2004.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019575214
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.scriptamat.2006.02.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016040174
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.scriptamat.2010.12.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051540403
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0167-577x(00)00091-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013864953
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1117/12.483469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040791421
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1142/s1793604712500385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063024270
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1177/104538903039134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063925528
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1177/1045389x03034687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054065943
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1177/1045389x04042793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063925638
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1179/095066010x12646898728363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064103351
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1179/1743284714y.0000000598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042977968
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1243/09544100jaero211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064453828
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.14442.37 schema:alternateName Hacettepe University
146 schema:name Department of Mechanical Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
147 Turkish Aviation Industry, Rotary Wing Technology Center, Kahramankazan, 06980, Ankara, Turkey
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...