Gradation of Nanostructures in Cold-Rolled and Annealed Ti–Ni Shape Memory Alloys View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02-22

AUTHORS

S. Prokoshkin, V. Brailovski, S. Dubinskiy, K. Inaekyan, A. Kreitcberg

ABSTRACT

Nanostructures formed in Ti–50.26 at.%Ni shape memory alloy as a result of post-deformation annealing (PDA) at 400 °C (1 h) after cold rolling (CR) in the e = 0.3–1.9 true strain range are classified and quantitatively studied. The statistical quantitative transmission electron microscopy analysis of bright and dark field images and selected area diffraction patterns reveal the following regularities. Two types of nanostructure form in B2-austenite as a result of PDA after CR: (a) a nanosubgrained structure, which consists of subgrains formed as a result of polygonization of the initially highly dislocated substructure; (b) a nanocrystalline structure, which represents a combination of the deformation-induced nano-grains grown during PDA and new nano-grains formed during crystallization of the amorphous phase. After moderate CR (e = 0.3), mainly nanosubgrained structure forms as a result of PDA. After CR of moderate-to-high intensity (e = 0.5–1.0) followed by PDA, the structure is mixed (nanosubgrained+nanocrystalline). After high-intensity CR (e = 1.2–1.9) and PDA, the structure is mainly nanocrystalline. This nanostructure identification allows adequate analysis of the nature of the parent phase boundaries in the thermomechanically processed Ti–Ni alloys and of their effect on the transformation and mechanical behaviors. More... »

PAGES

12-17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40830-016-0056-1

DOI

http://dx.doi.org/10.1007/s40830-016-0056-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002837007


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology \u201cMISIS\u201d, 4, Leninskiy Prosp., 119049, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology \u201cMISIS\u201d, 4, Leninskiy Prosp., 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prokoshkin", 
        "givenName": "S.", 
        "id": "sg:person.015352705675.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352705675.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ecole de Technologie Superieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, Canada", 
          "id": "http://www.grid.ac/institutes/grid.459234.d", 
          "name": [
            "Ecole de Technologie Superieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brailovski", 
        "givenName": "V.", 
        "id": "sg:person.0756023647.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756023647.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology \u201cMISIS\u201d, 4, Leninskiy Prosp., 119049, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology \u201cMISIS\u201d, 4, Leninskiy Prosp., 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dubinskiy", 
        "givenName": "S.", 
        "id": "sg:person.013554422117.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013554422117.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ecole de Technologie Superieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, Canada", 
          "id": "http://www.grid.ac/institutes/grid.459234.d", 
          "name": [
            "Ecole de Technologie Superieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inaekyan", 
        "givenName": "K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ecole de Technologie Superieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, Canada", 
          "id": "http://www.grid.ac/institutes/grid.459234.d", 
          "name": [
            "Ecole de Technologie Superieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kreitcberg", 
        "givenName": "A.", 
        "id": "sg:person.012534450355.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012534450355.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13632-013-0114-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049519448", 
          "https://doi.org/10.1007/s13632-013-0114-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0031918x10090127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032283929", 
          "https://doi.org/10.1134/s0031918x10090127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/419887a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043862206", 
          "https://doi.org/10.1038/419887a"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-22", 
    "datePublishedReg": "2016-02-22", 
    "description": "Nanostructures formed in Ti\u201350.26 at.%Ni shape memory alloy as a result of post-deformation annealing (PDA) at 400\u00a0\u00b0C (1\u00a0h) after cold rolling (CR) in the e\u00a0=\u00a00.3\u20131.9 true strain range are classified and quantitatively studied. The statistical quantitative transmission electron microscopy analysis of bright and dark field images and selected area diffraction patterns reveal the following regularities. Two types of nanostructure form in B2-austenite as a result of PDA after CR: (a) a nanosubgrained structure, which consists of subgrains formed as a result of polygonization of the initially highly dislocated substructure; (b) a nanocrystalline structure, which represents a combination of the deformation-induced nano-grains grown during PDA and new nano-grains formed during crystallization of the amorphous phase. After moderate CR (e\u00a0=\u00a00.3), mainly nanosubgrained structure forms as a result of PDA. After CR of moderate-to-high intensity (e\u00a0=\u00a00.5\u20131.0) followed by PDA, the structure is mixed (nanosubgrained+nanocrystalline). After high-intensity CR (e\u00a0=\u00a01.2\u20131.9) and PDA, the structure is mainly nanocrystalline. This nanostructure identification allows adequate analysis of the nature of the parent phase boundaries in the thermomechanically processed Ti\u2013Ni alloys and of their effect on the transformation and mechanical behaviors.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40830-016-0056-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136269", 
        "issn": [
          "2199-384X", 
          "2199-3858"
        ], 
        "name": "Shape Memory and Superelasticity", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "post-deformation annealing", 
      "cold rolling", 
      "shape memory alloy", 
      "transmission electron microscopy analysis", 
      "Quantitative transmission electron microscopy analysis", 
      "memory alloy", 
      "result of polygonization", 
      "moderate cold rolling", 
      "area diffraction patterns", 
      "true strain range", 
      "Ti-Ni shape memory alloy", 
      "electron microscopy analysis", 
      "nanostructure form", 
      "Ni shape memory alloy", 
      "dark-field images", 
      "Ti-Ni alloy", 
      "nanocrystalline structure", 
      "mechanical behavior", 
      "strain range", 
      "nanostructures", 
      "microscopy analysis", 
      "amorphous phase", 
      "alloy", 
      "diffraction patterns", 
      "phase boundary", 
      "structure forms", 
      "field images", 
      "rolling", 
      "subgrains", 
      "annealing", 
      "structure", 
      "polygonization", 
      "gradation", 
      "results", 
      "high intensity", 
      "boundaries", 
      "crystallization", 
      "substructure", 
      "phase", 
      "behavior", 
      "range", 
      "analysis", 
      "images", 
      "cold", 
      "combination", 
      "transformation", 
      "intensity", 
      "effect", 
      "adequate analysis", 
      "form", 
      "types", 
      "regularity", 
      "nature", 
      "identification", 
      "patterns"
    ], 
    "name": "Gradation of Nanostructures in Cold-Rolled and Annealed Ti\u2013Ni Shape Memory Alloys", 
    "pagination": "12-17", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002837007"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40830-016-0056-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40830-016-0056-1", 
      "https://app.dimensions.ai/details/publication/pub.1002837007"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_720.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40830-016-0056-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40830-016-0056-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40830-016-0056-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40830-016-0056-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40830-016-0056-1'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      22 PREDICATES      83 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40830-016-0056-1 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N2fa538e16db5429294753c32fbeaf89e
4 schema:citation sg:pub.10.1007/s13632-013-0114-4
5 sg:pub.10.1038/419887a
6 sg:pub.10.1134/s0031918x10090127
7 schema:datePublished 2016-02-22
8 schema:datePublishedReg 2016-02-22
9 schema:description Nanostructures formed in Ti–50.26 at.%Ni shape memory alloy as a result of post-deformation annealing (PDA) at 400 °C (1 h) after cold rolling (CR) in the e = 0.3–1.9 true strain range are classified and quantitatively studied. The statistical quantitative transmission electron microscopy analysis of bright and dark field images and selected area diffraction patterns reveal the following regularities. Two types of nanostructure form in B2-austenite as a result of PDA after CR: (a) a nanosubgrained structure, which consists of subgrains formed as a result of polygonization of the initially highly dislocated substructure; (b) a nanocrystalline structure, which represents a combination of the deformation-induced nano-grains grown during PDA and new nano-grains formed during crystallization of the amorphous phase. After moderate CR (e = 0.3), mainly nanosubgrained structure forms as a result of PDA. After CR of moderate-to-high intensity (e = 0.5–1.0) followed by PDA, the structure is mixed (nanosubgrained+nanocrystalline). After high-intensity CR (e = 1.2–1.9) and PDA, the structure is mainly nanocrystalline. This nanostructure identification allows adequate analysis of the nature of the parent phase boundaries in the thermomechanically processed Ti–Ni alloys and of their effect on the transformation and mechanical behaviors.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N51c3b4efb1cf4e0681fcd2e87c14f80c
14 Ncfd12e34dc4649ada2c598d28dd1151e
15 sg:journal.1136269
16 schema:keywords Ni shape memory alloy
17 Quantitative transmission electron microscopy analysis
18 Ti-Ni alloy
19 Ti-Ni shape memory alloy
20 adequate analysis
21 alloy
22 amorphous phase
23 analysis
24 annealing
25 area diffraction patterns
26 behavior
27 boundaries
28 cold
29 cold rolling
30 combination
31 crystallization
32 dark-field images
33 diffraction patterns
34 effect
35 electron microscopy analysis
36 field images
37 form
38 gradation
39 high intensity
40 identification
41 images
42 intensity
43 mechanical behavior
44 memory alloy
45 microscopy analysis
46 moderate cold rolling
47 nanocrystalline structure
48 nanostructure form
49 nanostructures
50 nature
51 patterns
52 phase
53 phase boundary
54 polygonization
55 post-deformation annealing
56 range
57 regularity
58 result of polygonization
59 results
60 rolling
61 shape memory alloy
62 strain range
63 structure
64 structure forms
65 subgrains
66 substructure
67 transformation
68 transmission electron microscopy analysis
69 true strain range
70 types
71 schema:name Gradation of Nanostructures in Cold-Rolled and Annealed Ti–Ni Shape Memory Alloys
72 schema:pagination 12-17
73 schema:productId N18ed7cdd210a47eea2e78081bb308626
74 N2e58cd2073764977beb4e02f0cb6abe6
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002837007
76 https://doi.org/10.1007/s40830-016-0056-1
77 schema:sdDatePublished 2022-05-10T10:13
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N5799b94a22c0485cafde9f24ed698358
80 schema:url https://doi.org/10.1007/s40830-016-0056-1
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N18ed7cdd210a47eea2e78081bb308626 schema:name dimensions_id
85 schema:value pub.1002837007
86 rdf:type schema:PropertyValue
87 N2e58cd2073764977beb4e02f0cb6abe6 schema:name doi
88 schema:value 10.1007/s40830-016-0056-1
89 rdf:type schema:PropertyValue
90 N2fa538e16db5429294753c32fbeaf89e rdf:first sg:person.015352705675.83
91 rdf:rest Nb83898592c624e46bfeef082ba595a31
92 N3076c13f4db94ab49ce32bc9f9387e68 rdf:first Naf877dbdd1774db8812d0f91f6e9d5bf
93 rdf:rest N8735bbc000874fbba36ee318016cdeec
94 N51c3b4efb1cf4e0681fcd2e87c14f80c schema:volumeNumber 2
95 rdf:type schema:PublicationVolume
96 N5799b94a22c0485cafde9f24ed698358 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N8735bbc000874fbba36ee318016cdeec rdf:first sg:person.012534450355.23
99 rdf:rest rdf:nil
100 Naf877dbdd1774db8812d0f91f6e9d5bf schema:affiliation grid-institutes:grid.459234.d
101 schema:familyName Inaekyan
102 schema:givenName K.
103 rdf:type schema:Person
104 Nb83898592c624e46bfeef082ba595a31 rdf:first sg:person.0756023647.41
105 rdf:rest Nbf4c1ab9bcd0431890e295ea605cc328
106 Nbf4c1ab9bcd0431890e295ea605cc328 rdf:first sg:person.013554422117.36
107 rdf:rest N3076c13f4db94ab49ce32bc9f9387e68
108 Ncfd12e34dc4649ada2c598d28dd1151e schema:issueNumber 1
109 rdf:type schema:PublicationIssue
110 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
111 schema:name Engineering
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
114 schema:name Materials Engineering
115 rdf:type schema:DefinedTerm
116 sg:journal.1136269 schema:issn 2199-384X
117 2199-3858
118 schema:name Shape Memory and Superelasticity
119 schema:publisher Springer Nature
120 rdf:type schema:Periodical
121 sg:person.012534450355.23 schema:affiliation grid-institutes:grid.459234.d
122 schema:familyName Kreitcberg
123 schema:givenName A.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012534450355.23
125 rdf:type schema:Person
126 sg:person.013554422117.36 schema:affiliation grid-institutes:grid.35043.31
127 schema:familyName Dubinskiy
128 schema:givenName S.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013554422117.36
130 rdf:type schema:Person
131 sg:person.015352705675.83 schema:affiliation grid-institutes:grid.35043.31
132 schema:familyName Prokoshkin
133 schema:givenName S.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352705675.83
135 rdf:type schema:Person
136 sg:person.0756023647.41 schema:affiliation grid-institutes:grid.459234.d
137 schema:familyName Brailovski
138 schema:givenName V.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756023647.41
140 rdf:type schema:Person
141 sg:pub.10.1007/s13632-013-0114-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049519448
142 https://doi.org/10.1007/s13632-013-0114-4
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/419887a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043862206
145 https://doi.org/10.1038/419887a
146 rdf:type schema:CreativeWork
147 sg:pub.10.1134/s0031918x10090127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032283929
148 https://doi.org/10.1134/s0031918x10090127
149 rdf:type schema:CreativeWork
150 grid-institutes:grid.35043.31 schema:alternateName National University of Science and Technology “MISIS”, 4, Leninskiy Prosp., 119049, Moscow, Russia
151 schema:name National University of Science and Technology “MISIS”, 4, Leninskiy Prosp., 119049, Moscow, Russia
152 rdf:type schema:Organization
153 grid-institutes:grid.459234.d schema:alternateName Ecole de Technologie Superieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, Canada
154 schema:name Ecole de Technologie Superieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, Canada
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...