Ontology type: schema:ScholarlyArticle Open Access: True
2016-02-22
AUTHORSS. Prokoshkin, V. Brailovski, S. Dubinskiy, K. Inaekyan, A. Kreitcberg
ABSTRACTNanostructures formed in Ti–50.26 at.%Ni shape memory alloy as a result of post-deformation annealing (PDA) at 400 °C (1 h) after cold rolling (CR) in the e = 0.3–1.9 true strain range are classified and quantitatively studied. The statistical quantitative transmission electron microscopy analysis of bright and dark field images and selected area diffraction patterns reveal the following regularities. Two types of nanostructure form in B2-austenite as a result of PDA after CR: (a) a nanosubgrained structure, which consists of subgrains formed as a result of polygonization of the initially highly dislocated substructure; (b) a nanocrystalline structure, which represents a combination of the deformation-induced nano-grains grown during PDA and new nano-grains formed during crystallization of the amorphous phase. After moderate CR (e = 0.3), mainly nanosubgrained structure forms as a result of PDA. After CR of moderate-to-high intensity (e = 0.5–1.0) followed by PDA, the structure is mixed (nanosubgrained+nanocrystalline). After high-intensity CR (e = 1.2–1.9) and PDA, the structure is mainly nanocrystalline. This nanostructure identification allows adequate analysis of the nature of the parent phase boundaries in the thermomechanically processed Ti–Ni alloys and of their effect on the transformation and mechanical behaviors. More... »
PAGES12-17
http://scigraph.springernature.com/pub.10.1007/s40830-016-0056-1
DOIhttp://dx.doi.org/10.1007/s40830-016-0056-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1002837007
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "National University of Science and Technology \u201cMISIS\u201d, 4, Leninskiy Prosp., 119049, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.35043.31",
"name": [
"National University of Science and Technology \u201cMISIS\u201d, 4, Leninskiy Prosp., 119049, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Prokoshkin",
"givenName": "S.",
"id": "sg:person.015352705675.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352705675.83"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ecole de Technologie Superieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, Canada",
"id": "http://www.grid.ac/institutes/grid.459234.d",
"name": [
"Ecole de Technologie Superieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, Canada"
],
"type": "Organization"
},
"familyName": "Brailovski",
"givenName": "V.",
"id": "sg:person.0756023647.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756023647.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National University of Science and Technology \u201cMISIS\u201d, 4, Leninskiy Prosp., 119049, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.35043.31",
"name": [
"National University of Science and Technology \u201cMISIS\u201d, 4, Leninskiy Prosp., 119049, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Dubinskiy",
"givenName": "S.",
"id": "sg:person.013554422117.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013554422117.36"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ecole de Technologie Superieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, Canada",
"id": "http://www.grid.ac/institutes/grid.459234.d",
"name": [
"Ecole de Technologie Superieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, Canada"
],
"type": "Organization"
},
"familyName": "Inaekyan",
"givenName": "K.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ecole de Technologie Superieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, Canada",
"id": "http://www.grid.ac/institutes/grid.459234.d",
"name": [
"Ecole de Technologie Superieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, Canada"
],
"type": "Organization"
},
"familyName": "Kreitcberg",
"givenName": "A.",
"id": "sg:person.012534450355.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012534450355.23"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s13632-013-0114-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049519448",
"https://doi.org/10.1007/s13632-013-0114-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s0031918x10090127",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032283929",
"https://doi.org/10.1134/s0031918x10090127"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/419887a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043862206",
"https://doi.org/10.1038/419887a"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-02-22",
"datePublishedReg": "2016-02-22",
"description": "Nanostructures formed in Ti\u201350.26 at.%Ni shape memory alloy as a result of post-deformation annealing (PDA) at 400\u00a0\u00b0C (1\u00a0h) after cold rolling (CR) in the e\u00a0=\u00a00.3\u20131.9 true strain range are classified and quantitatively studied. The statistical quantitative transmission electron microscopy analysis of bright and dark field images and selected area diffraction patterns reveal the following regularities. Two types of nanostructure form in B2-austenite as a result of PDA after CR: (a) a nanosubgrained structure, which consists of subgrains formed as a result of polygonization of the initially highly dislocated substructure; (b) a nanocrystalline structure, which represents a combination of the deformation-induced nano-grains grown during PDA and new nano-grains formed during crystallization of the amorphous phase. After moderate CR (e\u00a0=\u00a00.3), mainly nanosubgrained structure forms as a result of PDA. After CR of moderate-to-high intensity (e\u00a0=\u00a00.5\u20131.0) followed by PDA, the structure is mixed (nanosubgrained+nanocrystalline). After high-intensity CR (e\u00a0=\u00a01.2\u20131.9) and PDA, the structure is mainly nanocrystalline. This nanostructure identification allows adequate analysis of the nature of the parent phase boundaries in the thermomechanically processed Ti\u2013Ni alloys and of their effect on the transformation and mechanical behaviors.",
"genre": "article",
"id": "sg:pub.10.1007/s40830-016-0056-1",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136269",
"issn": [
"2199-384X",
"2199-3858"
],
"name": "Shape Memory and Superelasticity",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2"
}
],
"keywords": [
"post-deformation annealing",
"cold rolling",
"shape memory alloy",
"transmission electron microscopy analysis",
"Quantitative transmission electron microscopy analysis",
"memory alloy",
"result of polygonization",
"moderate cold rolling",
"area diffraction patterns",
"true strain range",
"Ti-Ni shape memory alloy",
"electron microscopy analysis",
"nanostructure form",
"Ni shape memory alloy",
"dark-field images",
"Ti-Ni alloy",
"nanocrystalline structure",
"mechanical behavior",
"strain range",
"nanostructures",
"microscopy analysis",
"amorphous phase",
"alloy",
"diffraction patterns",
"phase boundary",
"structure forms",
"field images",
"rolling",
"subgrains",
"annealing",
"structure",
"polygonization",
"gradation",
"results",
"high intensity",
"boundaries",
"crystallization",
"substructure",
"phase",
"behavior",
"range",
"analysis",
"images",
"cold",
"combination",
"transformation",
"intensity",
"effect",
"adequate analysis",
"form",
"types",
"regularity",
"nature",
"identification",
"patterns"
],
"name": "Gradation of Nanostructures in Cold-Rolled and Annealed Ti\u2013Ni Shape Memory Alloys",
"pagination": "12-17",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1002837007"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s40830-016-0056-1"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s40830-016-0056-1",
"https://app.dimensions.ai/details/publication/pub.1002837007"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:13",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_720.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s40830-016-0056-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40830-016-0056-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40830-016-0056-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40830-016-0056-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40830-016-0056-1'
This table displays all metadata directly associated to this object as RDF triples.
155 TRIPLES
22 PREDICATES
83 URIs
72 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s40830-016-0056-1 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N2fa538e16db5429294753c32fbeaf89e |
4 | ″ | schema:citation | sg:pub.10.1007/s13632-013-0114-4 |
5 | ″ | ″ | sg:pub.10.1038/419887a |
6 | ″ | ″ | sg:pub.10.1134/s0031918x10090127 |
7 | ″ | schema:datePublished | 2016-02-22 |
8 | ″ | schema:datePublishedReg | 2016-02-22 |
9 | ″ | schema:description | Nanostructures formed in Ti–50.26 at.%Ni shape memory alloy as a result of post-deformation annealing (PDA) at 400 °C (1 h) after cold rolling (CR) in the e = 0.3–1.9 true strain range are classified and quantitatively studied. The statistical quantitative transmission electron microscopy analysis of bright and dark field images and selected area diffraction patterns reveal the following regularities. Two types of nanostructure form in B2-austenite as a result of PDA after CR: (a) a nanosubgrained structure, which consists of subgrains formed as a result of polygonization of the initially highly dislocated substructure; (b) a nanocrystalline structure, which represents a combination of the deformation-induced nano-grains grown during PDA and new nano-grains formed during crystallization of the amorphous phase. After moderate CR (e = 0.3), mainly nanosubgrained structure forms as a result of PDA. After CR of moderate-to-high intensity (e = 0.5–1.0) followed by PDA, the structure is mixed (nanosubgrained+nanocrystalline). After high-intensity CR (e = 1.2–1.9) and PDA, the structure is mainly nanocrystalline. This nanostructure identification allows adequate analysis of the nature of the parent phase boundaries in the thermomechanically processed Ti–Ni alloys and of their effect on the transformation and mechanical behaviors. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | true |
13 | ″ | schema:isPartOf | N51c3b4efb1cf4e0681fcd2e87c14f80c |
14 | ″ | ″ | Ncfd12e34dc4649ada2c598d28dd1151e |
15 | ″ | ″ | sg:journal.1136269 |
16 | ″ | schema:keywords | Ni shape memory alloy |
17 | ″ | ″ | Quantitative transmission electron microscopy analysis |
18 | ″ | ″ | Ti-Ni alloy |
19 | ″ | ″ | Ti-Ni shape memory alloy |
20 | ″ | ″ | adequate analysis |
21 | ″ | ″ | alloy |
22 | ″ | ″ | amorphous phase |
23 | ″ | ″ | analysis |
24 | ″ | ″ | annealing |
25 | ″ | ″ | area diffraction patterns |
26 | ″ | ″ | behavior |
27 | ″ | ″ | boundaries |
28 | ″ | ″ | cold |
29 | ″ | ″ | cold rolling |
30 | ″ | ″ | combination |
31 | ″ | ″ | crystallization |
32 | ″ | ″ | dark-field images |
33 | ″ | ″ | diffraction patterns |
34 | ″ | ″ | effect |
35 | ″ | ″ | electron microscopy analysis |
36 | ″ | ″ | field images |
37 | ″ | ″ | form |
38 | ″ | ″ | gradation |
39 | ″ | ″ | high intensity |
40 | ″ | ″ | identification |
41 | ″ | ″ | images |
42 | ″ | ″ | intensity |
43 | ″ | ″ | mechanical behavior |
44 | ″ | ″ | memory alloy |
45 | ″ | ″ | microscopy analysis |
46 | ″ | ″ | moderate cold rolling |
47 | ″ | ″ | nanocrystalline structure |
48 | ″ | ″ | nanostructure form |
49 | ″ | ″ | nanostructures |
50 | ″ | ″ | nature |
51 | ″ | ″ | patterns |
52 | ″ | ″ | phase |
53 | ″ | ″ | phase boundary |
54 | ″ | ″ | polygonization |
55 | ″ | ″ | post-deformation annealing |
56 | ″ | ″ | range |
57 | ″ | ″ | regularity |
58 | ″ | ″ | result of polygonization |
59 | ″ | ″ | results |
60 | ″ | ″ | rolling |
61 | ″ | ″ | shape memory alloy |
62 | ″ | ″ | strain range |
63 | ″ | ″ | structure |
64 | ″ | ″ | structure forms |
65 | ″ | ″ | subgrains |
66 | ″ | ″ | substructure |
67 | ″ | ″ | transformation |
68 | ″ | ″ | transmission electron microscopy analysis |
69 | ″ | ″ | true strain range |
70 | ″ | ″ | types |
71 | ″ | schema:name | Gradation of Nanostructures in Cold-Rolled and Annealed Ti–Ni Shape Memory Alloys |
72 | ″ | schema:pagination | 12-17 |
73 | ″ | schema:productId | N18ed7cdd210a47eea2e78081bb308626 |
74 | ″ | ″ | N2e58cd2073764977beb4e02f0cb6abe6 |
75 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1002837007 |
76 | ″ | ″ | https://doi.org/10.1007/s40830-016-0056-1 |
77 | ″ | schema:sdDatePublished | 2022-05-10T10:13 |
78 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
79 | ″ | schema:sdPublisher | N5799b94a22c0485cafde9f24ed698358 |
80 | ″ | schema:url | https://doi.org/10.1007/s40830-016-0056-1 |
81 | ″ | sgo:license | sg:explorer/license/ |
82 | ″ | sgo:sdDataset | articles |
83 | ″ | rdf:type | schema:ScholarlyArticle |
84 | N18ed7cdd210a47eea2e78081bb308626 | schema:name | dimensions_id |
85 | ″ | schema:value | pub.1002837007 |
86 | ″ | rdf:type | schema:PropertyValue |
87 | N2e58cd2073764977beb4e02f0cb6abe6 | schema:name | doi |
88 | ″ | schema:value | 10.1007/s40830-016-0056-1 |
89 | ″ | rdf:type | schema:PropertyValue |
90 | N2fa538e16db5429294753c32fbeaf89e | rdf:first | sg:person.015352705675.83 |
91 | ″ | rdf:rest | Nb83898592c624e46bfeef082ba595a31 |
92 | N3076c13f4db94ab49ce32bc9f9387e68 | rdf:first | Naf877dbdd1774db8812d0f91f6e9d5bf |
93 | ″ | rdf:rest | N8735bbc000874fbba36ee318016cdeec |
94 | N51c3b4efb1cf4e0681fcd2e87c14f80c | schema:volumeNumber | 2 |
95 | ″ | rdf:type | schema:PublicationVolume |
96 | N5799b94a22c0485cafde9f24ed698358 | schema:name | Springer Nature - SN SciGraph project |
97 | ″ | rdf:type | schema:Organization |
98 | N8735bbc000874fbba36ee318016cdeec | rdf:first | sg:person.012534450355.23 |
99 | ″ | rdf:rest | rdf:nil |
100 | Naf877dbdd1774db8812d0f91f6e9d5bf | schema:affiliation | grid-institutes:grid.459234.d |
101 | ″ | schema:familyName | Inaekyan |
102 | ″ | schema:givenName | K. |
103 | ″ | rdf:type | schema:Person |
104 | Nb83898592c624e46bfeef082ba595a31 | rdf:first | sg:person.0756023647.41 |
105 | ″ | rdf:rest | Nbf4c1ab9bcd0431890e295ea605cc328 |
106 | Nbf4c1ab9bcd0431890e295ea605cc328 | rdf:first | sg:person.013554422117.36 |
107 | ″ | rdf:rest | N3076c13f4db94ab49ce32bc9f9387e68 |
108 | Ncfd12e34dc4649ada2c598d28dd1151e | schema:issueNumber | 1 |
109 | ″ | rdf:type | schema:PublicationIssue |
110 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Engineering |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Materials Engineering |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | sg:journal.1136269 | schema:issn | 2199-384X |
117 | ″ | ″ | 2199-3858 |
118 | ″ | schema:name | Shape Memory and Superelasticity |
119 | ″ | schema:publisher | Springer Nature |
120 | ″ | rdf:type | schema:Periodical |
121 | sg:person.012534450355.23 | schema:affiliation | grid-institutes:grid.459234.d |
122 | ″ | schema:familyName | Kreitcberg |
123 | ″ | schema:givenName | A. |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012534450355.23 |
125 | ″ | rdf:type | schema:Person |
126 | sg:person.013554422117.36 | schema:affiliation | grid-institutes:grid.35043.31 |
127 | ″ | schema:familyName | Dubinskiy |
128 | ″ | schema:givenName | S. |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013554422117.36 |
130 | ″ | rdf:type | schema:Person |
131 | sg:person.015352705675.83 | schema:affiliation | grid-institutes:grid.35043.31 |
132 | ″ | schema:familyName | Prokoshkin |
133 | ″ | schema:givenName | S. |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352705675.83 |
135 | ″ | rdf:type | schema:Person |
136 | sg:person.0756023647.41 | schema:affiliation | grid-institutes:grid.459234.d |
137 | ″ | schema:familyName | Brailovski |
138 | ″ | schema:givenName | V. |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756023647.41 |
140 | ″ | rdf:type | schema:Person |
141 | sg:pub.10.1007/s13632-013-0114-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049519448 |
142 | ″ | ″ | https://doi.org/10.1007/s13632-013-0114-4 |
143 | ″ | rdf:type | schema:CreativeWork |
144 | sg:pub.10.1038/419887a | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1043862206 |
145 | ″ | ″ | https://doi.org/10.1038/419887a |
146 | ″ | rdf:type | schema:CreativeWork |
147 | sg:pub.10.1134/s0031918x10090127 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032283929 |
148 | ″ | ″ | https://doi.org/10.1134/s0031918x10090127 |
149 | ″ | rdf:type | schema:CreativeWork |
150 | grid-institutes:grid.35043.31 | schema:alternateName | National University of Science and Technology “MISIS”, 4, Leninskiy Prosp., 119049, Moscow, Russia |
151 | ″ | schema:name | National University of Science and Technology “MISIS”, 4, Leninskiy Prosp., 119049, Moscow, Russia |
152 | ″ | rdf:type | schema:Organization |
153 | grid-institutes:grid.459234.d | schema:alternateName | Ecole de Technologie Superieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, Canada |
154 | ″ | schema:name | Ecole de Technologie Superieure, 1100, Notre-Dame Street West, H3C 1K3, Montreal, Canada |
155 | ″ | rdf:type | schema:Organization |